The square-wave modulation transfer functions (MTF) for such amorphous layers, therefore, the focal size of the 

For a silicon wafer, using white radiation with an absorption efficiency of 52% for Se-As layers, an 80\mu m layer was evaporated to form another blocking contact which improves landing characteristic of the scanning electron beam and prevents penetration of the electrons into the Se-As layer.

The thickness of the Se-As layer was 20 \mu m and has an absorption efficiency of 32% for X-ray. The target structure of the tube is shown in Fig. 1. The photodiode layer is comprised mainly from amorphous selenium which has a very high resistivity larger than 10^{12} \Omega cm in dark. Since the wavelengths near Se absorption edge. No degradation of resolution was observed by increasing the target thickness when the target voltage is increased proportionally to the thickness. This characteristic is an important advantage of the amorphous photodiode layers with high resistivities in dark.

The spatial resolution of the Se-As layer was 20 \mu m and has an absorption efficiency of 32% for X-ray. The target structure of the tube is shown in Fig. 1. The photodiode layer is comprised mainly from amorphous selenium which has a very high resistivity larger than 10^{12} \Omega cm in dark. Since the wavelengths near Se absorption edge. No degradation of resolution was observed by increasing the target thickness when the target voltage is increased proportionally to the thickness. This characteristic is an important advantage of the amorphous photodiode layers with high resistivities in dark.

The spatial resolution of the Se-As layer was 20 \mu m and has an absorption efficiency of 32% for X-ray. The target structure of the tube is shown in Fig. 1. The photodiode layer is comprised mainly from amorphous selenium which has a very high resistivity larger than 10^{12} \Omega cm in dark. Since the wavelengths near Se absorption edge. No degradation of resolution was observed by increasing the target thickness when the target voltage is increased proportionally to the thickness. This characteristic is an important advantage of the amorphous photodiode layers with high resistivities in dark.

The spatial resolution of the Se-As layer was 20 \mu m and has an absorption efficiency of 32% for X-ray. The target structure of the tube is shown in Fig. 1. The photodiode layer is comprised mainly from amorphous selenium which has a very high resistivity larger than 10^{12} \Omega cm in dark. Since the wavelengths near Se absorption edge. No degradation of resolution was observed by increasing the target thickness when the target voltage is increased proportionally to the thickness. This characteristic is an important advantage of the amorphous photodiode layers with high resistivities in dark.

The spatial resolution of the Se-As layer was 20 \mu m and has an absorption efficiency of 32% for X-ray. The target structure of the tube is shown in Fig. 1. The photodiode layer is comprised mainly from amorphous selenium which has a very high resistivity larger than 10^{12} \Omega cm in dark. Since the wavelengths near Se absorption edge. No degradation of resolution was observed by increasing the target thickness when the target voltage is increased proportionally to the thickness. This characteristic is an important advantage of the amorphous photodiode layers with high resistivities in dark.