20. SYMMETRY AND ITS GENERALIZATION

20.1-13 COLOUR SYMMETRY AND SCAILLING IN PHASE
TBANSITION AND CRITICAL PHENOMENA THEORY. By
V.A.Koptsik, Moscow University, Moscow, USSR

It is shown that the methoed of generalized rep-
resentations of the classical space and point
groups, and the method of colouredPand(Q-gro—
ups in their magnetic interpretation are the
equivalent languages for the symmetry descrip-
tion of magnetic structures arising th;ough
the phase transitions in crystals. The colour
symmetry methods may be effectivelly used in
the theory of critical phenomena because the
scaling transformations of the appropriate Ha-
miltonians are nothing but a special realiza-
tion of the US$EUC, BZ3RBZ ftransformations in
the colour symmetry groups. The principal idea
of colouxr scaiing consists in the abstract sym-
metry conservation law for isolated physical
systems. The commensurate (or incommensurate)
modulated structure of a crystal arising thro-
ugh. the phase transitions may be described in
terms of colour space groups isomorphic (or ho-
morphic) to the initial space groups:
P=TG=T{t36 =T ¢ & T o TG-S %P,
We use there the non-standard factorization of
the space groupqsconnected with the enlarged
unit celi BUC and go to the isomorphic positi-
onal colour space group@(z;QDWhich is the sub-
group of the wreath products of the groups P
and P which correspond to the selected model
of imperfect crystal. The action of the gene-
ralized symmetry operators<p?h.ﬁ%ﬂ%QeGﬁﬁLG@
on the field order parameter’Q(i)depends on
the point coordinates%;gﬁaﬁ;e &Whyeraging%(ﬂ
throughout the group G®™ in the volume of
EUC one obtains the uniform distribution of
fQ:(fzz(i')),To the scaling transformations USSEUS
there correspond the transformations from ini-
tial microscopic to some block Hamiltonian.If
this result coinsides with that of the renor-
malization group approach and with the experi-
mental data one may tzke the test model of
TGV B™group for the representative sub-
group of the generalized microscopic symmetry
of modulated phase of a crystal im the class
of the eguivalent symmetry groups. It follows
from abstract symmetry conservation law that
?wis isomorphic to the grouPQ%cand that @}
is the common subgroup of P.and éif}in accor-
dance with the experiment and theory of TLandau.
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20.2-1 APPLICATION OF EXPLICIT-ORIGIN SPACE
GROUP NOTATION. By S.R. Hall, Crystallography Centre,
University of Western Australia, Nedlands 6009, Australia.

The explicit-origin space group notation of Hall (Acta
Cryst. (1981) A37, 517) has a number of advantages over
the commonly-used short and full Her mann-Mauguin
symbols for computer-based symmetry operations. Foremost,
the new symbols are very simply translated into both site
and reflection symmetry information. It has other important
advantages as well. There is a clear relationship between
space group symmetries related by an inversion centre (e.g.
PZZab and -PZZab instead of P21212 and Pbam) or by point

groups (e.g. _anza and —PZaZn instead of Pmma and Pbcn);
the facility for all possible axial settings with symbols

" which exhibit .the same features; and a difference in

notation when an inversion centre is not placed at the
origin (e.g. -Puazb and P42 ‘lab are the centrosymmetric

and non-centrosymmetric forms of P4/nbm).

The recent addition of an origin shift parameter to the
notation provides for site compatability with all previous
(and future) space group settings. This, and the above
features, make the explicit-origin symbols ideal for
computer data-base and archival purposes. For this reason
they have been adopted by the XTAL Program System
(Hall et al., Acta Cryst. (1980) A36, 979) and the Standard
Crystallographic File Structure (Brown, Acta Cryst. (1983)
A39, 218). The origin shift update, the symbol translation
aTgorithm and some applications will be described.

20.2-2 THE IMPLICATION OF EUCLIDEAN NORMALIZERS OF
SPACE GROUPS ON INDICES AND PHASES OF STRUCTURE FACTORS.
By E. Koch, Institute for Mineralogy, University of
Marburg, Lahnberge, D-3550 Marburg, FRG.

The Euclidean normalizer Np(G) of a space group G forms
the appropriate tool to derive all equivalent descrip-
tions of a crystal structure or its enantiomorph from a
given one. For this, two different methods may be used:

(1) The space group (the location of its symmetry ele-
ments) and the unit cell (basis vectors and origin) are
kept fixed in space, whereas the coordinates of all

atoms are transformed by the symmetry operations of

Np(G) (W. Fischer & E. Koch, Acta Cryst..(1983) A39,907).
By this means the crystal structure or its enantiomorph
is embedded into the unit cell in n different ways, each
referring to one of the n cosets of G in Ng(G) and each
giving rise to another coordinate description.

(2) The crystal siructure itself and therewith its sym-
metry elements (the space group) are kept fixed in space,
whereas the original chosen unit cell is transformed
(rotated, inverted, translated) by the symmetry opera-
tions of Ng(G). This procedure results in the same n
coordinate descriptions as method (1),but the transition
to the enantiomorph is replaced by the change of the
handedness of the basis system.

For studying the implication of Euclidean normalizers in
reciprocal space the second approach is more adequate:
Each change of coordinate system in direct space, de-
scribed by a matrix-vector pair (P,p), causes a basis
transformation in reciprocal space and, as a consequence,
a change of indices for all reflections from h to h'=hP
and of structure-factor phases from ¢(h) to — =
o'(h')=e{h)-2zhp (Ffor symbolism cf. H.7Arnold in: Inter-
national Tables for Crystallography, Vol. A (1983) D.
Reidel). If (P,p) corresponds toc a symmetry operation
of G itself, the original set of indices and related



