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20.1-13 COLOUR SYMMETRY AND SCALLING IN PHASE 

TRANSITION AND CRITICAL PHENOMENA THEORY. By 

V.A.Koptsik, Moscow UniverSity, MOscow, USSR 

It is shown that the method of generalized rep­
resentations of the classical space and point 

groups, and the method of cOlouredP-and Q -gro­
ups in their magnetic interpretation are the 
e 'lui valen t languages for th e symmetry descrip­
tion of magnetic structures ariSing through 

the phase transitions in crystals. The colour 

symmetry methods may be effectivelly used in 

the theory of critical phenomena because the 

scaling transformations of the appropriate Ha­

miltonians are nothing but a special realiza­

tion of the US~EUC, BZ~RBZ transformations in 

the colour symmetry groups • The principal idea 

of colour scaiing consist s in the abstract sym­

metry conservation law for isolated physical 
systems. The commensurate (or inco~~ensurate) 

modulated structure of a crystal arising thro­

ugh. the phase transitions may be described in 

terms of colour space groups isomorphic (or ho­
morphic) to the initial space groups: 
4 ~ TG = T"£t;.W '" T"c.Ct) ++ T "c.Ct,W) ~ -rW)~wl"cp(w\::p9Scp, 
We use there the non-sta~dard factorization of 

the space group<P co=ecteo with the enlarged 
unit cell EUC and go to the isomorphic positi-
. ";'(W'rf.-

anal colour space group':!-'#'1"'which is the sub-

group of the wreath products of the groups P 
and cP which correspono to the selected model 

of imperfect crystal. The action of the gene­
ralized symmetry operators<?t~ .. p\.~I~)ec;.(t,1..G'" 
on the field order parameteriJ(C'Z'Joepends on 

the point cooroinat es 't"=~5L ,~<.eC.(t,:-nAveraging'l((z) 
throughout the group G (t,W) in the volume of 

EUC one obtains the uniform oistribution of 

'Q=<"lCt).TO the scaling transformations US9EUS 
there correspond the tra~sformations from ini­

tial microscopiC to some block Hamiltonian. If 

this result coinsioes with that of the renor­

malization group approach and with the experi­

mental data one may take the test model of 
. T*GJt,WJ=cp(wlgroup for the representative sub-

group of the generalizeo microscopic symmetry 

of modulated phase of a crystal in the class 

of the equivalent symmetry groups. It follows 

from abstract synmetry conservation law that 
~W)iS isomorphic to the grouP<Pt ano that 4>\" 
is the common subgroup oI--<P"and cp~Wl in accor­

dance with the experiment and theory of Landau. 

20.2-1 APPLICATION OF EXPLICIT -ORIGIN SPACE 
GROUP NOTATION. By S.R. Hall, Crystallography Centre, 
University of Western Australia, Ned lands 6009, Austral ia. 

The explicit-origin space group notation of Hall (Acta 
Cryst. (1981) A37, 517) has a number of advantages over 
the commonly-used short and full Hermann-Mauguin 
symbols for computer-based symmetry operations. Foremost, 
the new symbols are very simply translated into both site 
and ref lection symmetry information. It has other important 
advantages as we II. There is a clear re lationship between 
space group sym metries re lated by an inversion centre (e.g. 
P22ab and -P22ab instead of P2 1212 and Pbam) or by point 

groups (e.g. -P2a2a and -P2a2n instead of Pmma and Pbcn); 

the facility for all possible axial settings with symbols 
which exhibit ,the same features; and a difference in 
notation when an inversion centre is not placed at the 
origin (e.g. -P~a2b and P~2 -lab are the centrosymmetric 

and non-centrosymmetric forms of P~/nbm). 

The recent addition of an origin shift parameter to the 
notation provides for site compatability with all previous 
(and future) space group settings. This, and the above 
features, make the explicit-origin symbols ideal for 
computer data-base and archival purposes. For this reason 
they have been adopted by the XT AL Program System 
(Hall et ai., Acta Cryst. (1980) A36, 979) and the Standard 
Crystallographic File Structure (Brown, Acta Cryst. (1983) 
A39, 216). The origin shift update, the symbol translation 
algorithm and some applications will be described. 

20.2-2 THE IMPLICATION OF EUCLIDEAN NORI~ALIZERS OF 
SPACE GROUPS ON INDICES AND PHASES OF STRUCTURE FACTORS. 
By E. Koch, Institute for Mineralogy, University of 
Marburg, Lahnberge, 0-3550 Marburg, FRG. 
The Euclidean normalizer NE(G) of a space group G forms 
the appropriate tool to derive all equivalent descrip­
tions of a crystal structure or its enantiomorph from a 
given one. For this, two different methods may be used: 
(1) The space group (the location of its symmetry ele­
ments) and the unit cell (basis vectors and origin) are 
kept fixed in space, whereas the coordinates of all 
atoms are transformed by the symmetry operations of 
NE(G) (Yi. Fischer & E. Koch, Acta Cryst. (1983) A39,907). 
By this means the crystal structure or its enantiomorph 
is embedded into the unit cell in n different ways, each 
referring to one of the n cosets of G in NE(G) and each 
giving rise to another coordinate descriptIon. 
(2) The crystal structure itself and therewith its sym­
metry elements (the space group) are kept fixed in space, 
whereas the original chosen unit cell is transformed 
(rotated, inverted, translated) by the symmetry opera­
tions of NE(G). This procedure results in the same n 
coordinate descriptions as method (1),but the transition 
to the enantiomorph is replaced by the change of the 
handedness of the basis system. 
For studying the implication of Euclidean normalizers in 
reciprocal space the second approach is more adequate: 
Each change of coordinate system in direct space, de­
scribed by a matrix-vector pair (P,p), causes a basis 
transformation in reCiprocal space and, as a consequence, 
a change of indices for all reflections from h to h'=hP 
and of structure-factor phases from ~(h) to - --­
~'(h')=~(h)-2nhp (for symbolism cf. H.-Arnold in: Inter­
natIonal TableS-for Crystallography, Vol. A (1983) D. 
Reidel). If (P,p) corresponds to a symmetry operation 
of G itself, the original set of indices and related 
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structure factors and the transformed one are identical, 
i.e. F(h)=F'(h). For the same reason, all transfor­
mations-corresponding to a given coset of G in NE(G) 
result in the same set of indices and related structure 
factors. In the present context it is $ufficient, there­
fore, to treat one representative symmetry operation 
from each coset. Two cases shall be discussed separa­
tely: 
(a) The coset can be represented by a pure translation 
(I,p), I being the identity matrix: Then all indices 
remain unchanged (h'=hI=h) and only the phases change 
(~'(h)=~(h)-2nhp).-The-number nt of such cosets equals 
the Index-between the translation subgroups,of G and of 
NE(G). The permissible origin translations (C.Giacovazzo, 
Acta Cryst. (1974) A30, 390) pI ayi ng a fundamenta L pa rt 
in direct methods may-be derived directly as those trans­
lations of NE(G) not belonging to G itself. 

(b) The coset cannot pe represented by a pure trans­
lation: Then each corresponding unit cell transformation 
causes a mapping of the reciprocal lattice with the pro­
perty, that the two structure factors with the same 
indices F(h) and F'(h) (referring to the original basis 
and the transformed basis, respectively) are not related 
by space-group symmetry, i.e. !F(h)! ~!F'(h)l. For this, 
G and NE(G) have to belong to difrerent crystal classes. 
If n is the index of G in NE(G) and nt is the index be­
tween the corresponding two tran~lation subgroups, then 
n/nt is the number of symmetrically inequivalent index­
ing schemes in reciprocal lattice. In the special case 
of a non-centrosymmetrical crystal structure without 
anomalous scatterers Friedel's law holds and, therefore, 
the number of inequivalent indexing schemes is reduced 
by a factor of 2 (exception: space groups from enantio­
morphic pairs). In such a case different indexing 
schemes occur only if G and NE(G) belong to different 
Laue groups. 

20.2-3 INVARIANT SUBGROUPS OF SPACE GROUPS. 
By M. Senechal, Professor of Mathematics, 
Smith College, Northampton, MA 01063 

Invariant (normal) subgroups play a central 
role in group theory, for example in the struc­
ture of groups, in representation theory, and 
in group-subgroup relations. We continue our 
study of the subgroups of space groups (Acta 
Cryst. A 36, 1980, 845-850) by investigating 
the properties of invariant subgroups of space 
groups, in any dimension. Necessary and suffi­
cient conditions for a subgroup H of a space 
group G to be invariant are established: its 
translation subgroup TH must be invariant in G, 
and the image (factor group) H/TH must be in­
variant in G/TH. These conditions are re­
stated in a form which leads to a computa­
tional algorithm (tables of invariant sub­
groups are being prepared by P. Engel). The 
structures of the images G/H are also dis­
cussed and partially characterized. 

20.2-4 GEOMETRIC PROPERTIES OF HYCKOFF SETS IN 
SPACE GROUPS. 
By Chung Chieh, Guelph-Waterloo Centre for 

Graduate Work in Chemistry, University of Waterloo, 
Waterloo, Ontario, Canada N2L 3Gl 

A collection of symmetry equivalent points in a space 
group is called vJyckoff positions. ~lost space groups have 
positions with point-group symmetry higher than the tri­
vial, and those with the highest site symmetry are parti­
cularlly interesting. For convenience, let those with the 
highest site symmetry be called "very special Wyckoff 
positions". In some space groups, there are several very 
special vJyckoff positions that may be permuted by auto­
morphisms of space groups (Koch & Fisher, 1975,Acta Cryst. 
A3l, 88), and they form a "Hyckoff set", so named by 
Wondratschek (International Tables for Crystallography, 
1983, Vol. A, Dordrecht/Boston, Reidel). Thus the Wyckoff 
sets with the highest site symmetry may also be called 
"very special Wyckoff sets". 

The Dirichlet domains of the very special Wyckoff 
sets of 3-dimensional space groups are polyhedra, which 
may be used as geometric units; although their introduc­
tion was for the classification and description of cubic 
crystal structures (Chieh, 1979, Acta Cryst., A35, 946). 
I~hen the concept of geometric unit was employedto clas­
sify tetragonal, hexagonal and rhombohedral space groups 
(Chieh, 1983, Acta Cryst., A39, 415), the author has 
real ized the need for a theoretical basis, i.e. the 
rigorous criterion for geometric units. The use of 
Dirichlet domains of very special Wyckoff sets seems to be 
the most appropriate. 

As an example, the geometric units for the 17 2-
dimensional space groups are given in the Figure. There 
are four categories reflecting the number of geometric 
units per crystallographic cell. Although some may two 
types due to the presence (or the lack) of symmetry in the 
crystal system. A similar scheme for 3-dimensional space 
groups will be presented. 
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Figure. Geometric units of the 17 2-dimensional space 
groups. Site symmetry at the centre of these units 
are given in the bracket. 


