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Abstract 

A simple framework for the analysis of the effects of 
errors in the method of isomorphous replacement is 
developed. This framework is used to derive phase 
probability distributions similar to those given by 
Blow & Crick [Acta Cryst. (1959). 12, 794-802]. The 
present analysis suggests an improved means of calcu- 
lating the mean-square 'lack-of-closure' residuals and 
shows that they differ by a factor of two for centric 
and acentric reflections. It is also shown that the 
lack-of-closure residuals have a straightforward inter- 
pretation and that they may be used to estimate the 
error in the heavy-atom model and the degree of 
isomorphism between native and derivative structures 
if anomalous differences have been measured. 

Introduction 

In the method of isomorphous replacement, informa- 
tion from several sources is generally combined by 
multiplying the various probability distributions for 
each phase. Consequently the accuracy of these prob- 
ability distributions is of some importance and a 
detailed understanding of the effects of errors on these 
distributions would be valuable. 

An expression often used to calculate a phase prob- 
ability distribution P(~o) for a reflection is (Blow & 
Crick, 1959) 

P(~o)ocexp[-(F~n-F~H)2/2E 2] ( l a )  

where q~ is the native phase and F~n is the observed 
derivative structure-factor amplitude. F~n is a calcu- 
lated derivative structure-factor amplitude, given by 

F~pn = lEg exp ( i¢ ) + fill. ( 1 b) 

Here F~ is the observed native stracture-factor ampli- 
tude and fH is an estimate of the structure factor of 
the heavy atoms present in the derivative structure 
but not in the native structure, calculated from a 
model. 

Although it is clear that the choice of E 2 in ( l a )  
is crucial, the proper value of E 2 is not obvious. In 
practice (Ten Eyck & Arnone, 1976), the value of E 2 
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generally used is the mean-square value of the 'lack- 
of-closure' residual, ((F°pn-F~n)2), where F~n is 
the derivative structure-factor amplitude calculated 
using ( lb)  at the 'best' native phase. 

In this paper, we develop a simple framework for 
the analysis of the various errors in the isomorphous 
replacement method. We show that phase probability 
distributions similar to those given by Blow & Crick 
(1959) may be derived, beginning with very basic 
assumptions. This derivation shows that current 
methods of estimating E 2 are justified except that the 
value of E 2 for centric reflections is twice that for 
acentric reflections. We also suggest a somewhat 
improved method of estimating E ". Finally, we show 
how the lack-of-closure residuals may be used to 
estimate the lack of isomorphism between native and 
derivative structures as well as the error in the heavy- 
atom model if anomalous differences have been 
measured. 

Errors in calculated and measured derivative 
structure-factor amplitudes 

Even if the native phase q~ is known, the calculated 
derivative structure-factor amplitude F~.H for a par- 
ticular reflection calculated using (1 b) is not generally 
equal to the measured derivative structure-factor 
amplitude F°,n. Aside from anomalous-scattering 
effects, there are three principal reasons for this: 
errors in measurement and scaling, errors in the 
heavy-atom model, and lack of isomorphism between 
native and derivative structures. The purpose of this 
section is to analyze these sources of error. Once we 
have done this, we will be able to write F~,H and F~,H 
in terms of variables which have known probability 
distributions. This will allow us to write an expression 
for the native-phase probability distribution. 

Errors in measurement 

The most obvious errors in (1 a) are the errors in 
measuring and scaling of native and derivative struc- 
ture-factor amplitudes. We assume here that trp and 
trpn, the uncertainties in measurement of native and 
derivative structure-factor amplitudes, respectively, 
are known (e.g. from comparison of intensities of 
symmetry-related reflections). Assuming further that 
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the errors in measurement have a Gaussian distribu- 
tion, we may express the probability of measuring a 
value of the derivative structure-factor amplitude 
between F~H and F°pH +dF°pn, given that the true 
derivative structure-factor amplitude is Fpu: 

P( F°pn FpH ) dF°pH 

oc exp [ - (F~u-  Fpu)2/2crZu] dF~H" (2) 

An analogous probability distribution may be written 
for the observed native structure-factor amplitude. 

Errors in the heavy-atom model 

A major uncertainty in Fin, the calculated deriva- 
tive structure-factor amplitude , is the error in the 
heavy-atom model leading to the estimate f .  of 
the heavy-atom structure factor. Let FH denote the 
true heavy-atom structure factor, define the 'residual 
heavy-atom structure factor' ~1 as the difference 
between the true and estimated values of the heavy- 
atom structure factor: ~1- F H - - f H  (see Fig. 1 and 
Table 1). Then, if the native and derivative structures 
are perfectly isomorphous, the true native Fp and 
derivative FpH structure factors are related by Fl, n = 
Fv+fn+~l .  We will assume that fn and ~1 are not 
correlated, which will generally be the case unless 
incorrect sites have been included in the heavy-atom 
model. 

As long as there are several minor heavy-atom sites 
not included in the heavy-atom model (as will gen- 
erally be the case), the probability distribution for -q 
will be nearly a two-dimensional Gaussian distribu- 
tion (Wilson, 1949). Defining ~1--(r/x, %), we may 
therefore write that, for acentrie reflections, the prob- 
ability that fix is between 7x and ~Tx + drlx, and that 
% is between % and fly + d %  is 

P(n) d2n =- P( nx, ny) d'qx dr / r  

oc exp [-(~72 + ,?2)/H2] d~x d,ly (3a) 

where the mean-square value of the residual heavy- 
atom structure-factor amplitude (l~ll 2) is H 2. For cen- 
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Fig. 1. The relationship of  structure factors and other quantities 
discussed in the text. Definitions of  all symbols are summarized 
in Table 1. 

Table 1. Summary of principal variables 

Variable Symbol 

Native structure factor Fp~ Fp exp (i~p) 
and phase 

+ 
Derivative structure factors FpH , FpH 

(elements of a Friedel pair) 
Average derivative structure FpH 

factor 
Anomalous difference Ap/./ 
Heavy-atom structure factor 

non-anomalous part FH 
anomalous part 8 

Estimated heavy-atom structure fH 
factor (non-anomalous part) 

Residual heavy-atom structure ~i 
factor (non-anomalous part) 

Lack-of-isomorphism structure Ix 
factor 

Observed 
quantity 
(if any) 

F~ 

a~ 

Basic relationships 

F p H  ~ Fp-[.- IX --1- F H 

FH------fH+n 
+ - 

FpH = Fp.  + 8 

FpH* -= Frn - S 

= 2(]FpHl--lFpn[) A p  H __ 1 + 

trie reflections, which can have only one of two poss- 
ible phases, the probability distribution for ~1 is a 
one-dimensional Gaussian with the same mean- 
square amplitude H 2 (Wilson, 1949). Denoting the 
residual heavy-atom structure factor by the scalar ~7, 
we have 

P(rl) d~7 oc exp - ( r /2 /2H 2) d~. (3b) 

Notice that although the mean-square values H z are 
equal in the aeentric and centric eases, the 
denominators of the exponentials in (3a) and (3b) 
differ by a factor of two: this is the difference between 
one-dimensional and two-dimensional Gaussian dis- 
tributions with equal mean-square values. 

Lack of isomorphism 

Another major error in the calculated derivative 
structure-factor amplitude F~H is the effect of non- 
isomorphism between native and derivative struc- 
tures. We define the lack-of-isomorphism structure 
factor Ix as the difference between true native and 
derivative structure factors caused by all sources 
except heavy-atom substitution in the derivative 
structure. 

Ix --= F p H - -  (Fp-I-  F H ) ,  (4 )  

where Fvm Fp, and F .  are defined above. 
The probability distribution for the lack-of- 

isomorphism structure factor Ix is, like that ~'or the 
residual heavy-atom structure factor ~, very nearly a 
two-dimensional Gaussian for acentric reflections 
and a one-dimensional Gaussian for centrie reflec- 
tions, as is shown in the Appendix. We can therefore 
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express the probability distribution for the lack-of- 
isomorphism structure factor for centric reflections as 

p(ix) dixocexp (-/z2/2M2) d/z (4a) 

where (/z2)= M 2. For acentric reflections a nearly 
identical treatment may be applied. Defining IX = 
(/Zx,/zy), we may write 

P(IX) d2ix -- P(/Zx,/zy) d/z,, d/zy 

ocexp [-(/zE + /zE)/ M2] d/zx d/zy (4b) 

where the mean value (IIX[ 2) is again M 2. 
We have now obtained the probability distributions 

for the principal sources of error in ( la) :  the errors 
in measurement of native and derivative structure- 
factor amplitudes, the errors in the heavy-atom model 
and the lack of isomorphism between native and 
derivative structures. The errors from these sources 
are essentially uncorrelated with each other and with 
the native and derivative structure factors so that we 
may treat them all as independent variables in calcu- 
lating a probability distribution for the native phase 
~o. Note that given Fp, fn, ~1 and IX we can write an 
expression for the derivative structure factor Fan 
(Fig. 1): 

FpH = Fp+ IX + fn +~ .  (5) 

Calculation of the native-phase probability distribution 

A straightforward application of statistical methods 
may now be used to calculate the native-phase proba- 
bility distribution. The central element in this calcula- 
tion is the relationship known as Bayes' rule (Hamil- 
ton, 1964), which we illustrate now. Suppose we have 
some knowledge of the probability distribution for a 
variable (from a previous experiment), so that before 
making a new measurement we may write (a priori) 
that the probability it is between x and x + d x  is 
Po(x) dx. Now we make a new measurement of this 
variable, call its value y. Suppose that we know 
enough about our procedure to say that if the parent 
value of y is x, then the probability that we would 
measure y between y and y + dy is P(y[x) dy. Bayes' 
rule states that we may calculate a new probability 
distribution for x based on the a priori information 
Po(x), the measurement y, and the probability that 
we would have measured y if x were its parent value: 

P(x) = Po(X)P(YIX)/al!x Po(X)P(yIx) dx (6) 

or, more simply, 

p(x)oc Po(x)P(y/x). (7) 

In the present case, we are interested only in the 
probability distribution for ~o, the native phase. In 
order to obtain this, however, we must first calculate 
the joint probability distribution for ~o, Fp, ~1 and IX. 

Then we will integrate this joint probability distribu- 
tion over all values of Fp, ~1 and Ix, in order to obtain 
the probability distribution for ~. The set of variables 
~, Fp, 11 and IX corresponds to the single variable x 
in the preceding example. 

We have a priori information about some of the 
fundamental variables in this calculation. Consider 
first an acentric reflection. If there is phase probability 
information from other sources, denote this a priori 
distribution by Po(~). We assume that these other 
sources are independent so that the a priori phase 
probability distribution does not depend on any of 
the variables of current interest. An a priori probabil- 
ity distribution for the native structure-factor ampli- 
tude is also known (Wilson, 1949), 

Po( Fp)OC Fp exp (-F2p/..Y, ) (8) 

where £ is the mean-square native structure-factor 
amplitude at the appropriate resolution. In (3a) and 
(4a) we have a priori probability distributions for ~1 
and IX. Before making any measurements of F~, and 
F~,H, then, we may write that the joint probability 
distribution for ~o, Frs ~1 and IX is 

Po(~O, Fp, -q, IX) oc Po(~o)Po(Fp)P('q)P(IX). (9) 

Now, if we apply Bayes' rule after making measure- 
ments F~. and F~.H of the native and derivative struc- 
ture-factor amplitudes, we may use (2) and the 
analogous equation for F~, to express P: 

F,.,.q, ix)OC Po( , F,,,.q, ix) 

x P(F°p Fe)P(F~. Fe.) (10) 

where Fell = ]Fee] is calculated using (5). Finally, to 
obtain the probability distribution for ~o alone, we 
may integrate (10) over all possible values of Fe, ~1, IX: 

P(~o)oc J P(~o, Fe,.q, ix) dFpd2.qd2ix (11) 

or, using (2), (3), (4b) and (8), 

P(~o) oc Po(~O) ~ exp [-F2p/2 - "q 2/H 2 

- I I x l = / M  = - - F~)2/2or 2 

-- (FpH-- FpH)° 2/20.pH]F P 2  dFv d2~ d2ix 
(12) 

where Fen is calculated from (5). Equation (12) is 
an exact expression which includes all the informa- 
tion discussed here relating to the probability distri- 
bution for the native phase ~. If we assume further 
that and IIXl as we l l  as If-I are small relative 
to F~. and El.n, (12) may be integrated using first- 
order approximations to yield an approximate phase 
probability distribution for acentric reflections: 

P(~0) cc exp {- (F~. .  - F~.)2 

x [ H 2 +  M2+2tr2+2o'~,u]-l}Po(~0), (13) 
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where F~,H is evaluated using (lb). Except for the a 
priori probability distribution for the native phase 
P0(~), this is equivalent to the formula given by Blow 
& Crick (1959), as shown in ( la) ,  where E 2 is given 
by 

E 2 2 = EAcENT= H2/2+ M2/2+0,~+0`zH. (14) 

Our procedure for calculating the phase probability 
distribution, which begins from very basic assump- 
tions, has yielded the same result as this much earlier 
work except that the contributions of various sources 
to E 2 are now separated into defined components. 

An analogous procedure may be used to obtain an 
expression for the phase probability distribution for 
centric reflections: 

p(~p) oz Po(q~) I exp [-F~/2 ,Y -r12/2H 2 

-/z2/2M2- (Fp - F~)2/20`~ 

(Fpn o 2 2 - - F p n ) / 2 0 ` p n ] d F p d T l d t z  (15) 

which may be integrated, using the same approxima- 
tions as above, to yield 

p(q~) cc exp { - (F~n  - F~H)2 

x[2H2+2M2+E0`E +20`EM]-1}po(~p). (16) 

This expression is identical to that for acentric reflec- 
tions except that E 2 for centric reflections is 

2 ~ H 2 2 2 2 ECENT + M "3L 0 ,  p "~" 0 ,  p H . (17) 

That is, aside from errors in measurement, the centric 
E 2 is twice the acentric E 2. This difference is entirely 
due to the difference between the expressions for 
one-dimensional and two-dimensional Gaussian dis- 
tributions with equal mean-square values [e.g. (3a) 
and (3b)]. 

Calculation of  the phase probability distribution in the 
presence of anomalously scattering atoms in the deriva- 
tive structure 

In order to calculate the phase probability distribu- 
tion in the presence of anomalously scattering heavy 
atoms in the derivative structure, we need expressions 
for the average derivative structure factor FpH and 
the anomalous difference ApH (North, 1965). Since 
anomalous differences are rarely measured with an 
accuracy much better than the typical values of the 
anomalous differences, relatively crude approxima- 
tions will suffice here. If we assume that the heavy- 
atom structure-factor amplitude IFH[ is small relative 
to the native structure-factor amplitude IFI,], the 
average derivative structure-factor amplitude Ppn 
and the anomalous difference ApH are given approxi- 
mately by (see the Appendix and North, 1965): 

PPn = ½( F~H[ + F~,H ) - -  Fpu, (18) 

ApH =½( F~H -- [F~,HI)----1/KFH sin y (19) 

where y is the angle between F H and + FpH , FpH is 
from (5), and K is the ratio of real to anomalous 
scattering for the heavy atoms. Notice that the 
anomalous difference is relatively insensitive to lack 
of isomorphism. 

An expression analogous to (12) for the phase 
probability distribution when anomalous differences 
have been measured is: 

P(~o)oc Po( q~ ) J" exp [-F2/.,Y -I~l 2 /H 2 - ixl2/M 2 

_ ( F e _ F ~ ) E / 2 0 , E _ ( f p n  -o 2 2 - Few)/20,pH 
( A , ,  H o 2 2 -- --ApH ) /20,ANo]FpdFpd2"qd2p. 

(20) 
where Pew and Apn are calculated using (18) and 
(19), 0,ANO is the uncertainty in the anomalous 
difference, and the integral is over all possible values 
of F~ ~1 and Ix. With the same approximations which 
led to (12), (20) may be integrated to yield an approxi- 
mate phase probability distribution when anomalous 
differences have been measured: 

P(~o) ¢c exp {-(P~,H - P~t4)2 

x [H  2 + M 2 + 20, 2 + 2 o - 2 ]  -1 

- ( A ~'H -- A ~'H )2[ H2/K2 "4- 2 0`2NO3 -1} Po( ~0 ) 

(21) 

where -c FpH and ApH are calculated using (18) and 
(19). 

The first term in the exponent of (21) is identical 
to the exponent in (13). The second term is due to 
the effects of anomalous scattering and is identical 
to that given by North (1965) except that EENo is 
given by the expression 

= 2 (22) E2NO (H2/EK2) + 0`ANO. 

Notice that E2NO does not depend on the lack of 
isomorphism (M2). 

Estimation of  2 EACENT, E2ENT and E2NO 

Equations (13), (16) and (19) require estimates of 
2 2 2 EACENT, ECENT and which are EANO, not available 

directly from measurements. To develop a method 
for estimating them we first calculate the expected 
value of the centric, acentric and anomalous mean- 
square lack-of-closure residuals, evaluated in the 
usual fashion (Blow & Crick, 1959; Ten Eyck & 
Arnone, 1976), assuming that the native phase ~0 is 
known precisely. Using the same first-order approxi- 
mations as above, it may be shown, using (3b), (4a) 
and (5), that the mean-square value of the centric 
lack-of-closure residual is 

((F~H - F~m)2) -- H 2 + M 2 + (o,2) + (0,2 n) 

(centric). (23) 

If we assume once again that the native phase is 
known, the expected values of the acentric and 
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anomalous lack-of-closure residuals are given, using 
(3a), (4b), (5), (316),  (18) and (19), by 

((F°pn - F~,H) 2) -- H2/2 + M2/2 + (0r2p) + (ty2H) 

(acentric) (24) 
and 

((A~,u- A~,n)2) - Hz/(2K2) + (0"2NO) (25) 

where the constant K is defined above. 
Comparing (23)-(25) with (14), (17) and (22), it is 

clear that the appropriate values of E 2 for centric, 
acentric and anomalous differences in the formula- 
tions of Blow & Crick (1959) and North (1965) are 
the usual mean-square lack-of-closure residuals 
calculated using the correct native phases. It must be 
noted that centric and acentric reflections are to be 
treated separately, however. 

The standard methods of estimating the lack-of- 
closure errors (Blow & Crick, 1959; Ten Eyck & 
Arnone, 1976) rely on the values of the lack-of-closure 
residuals evaluated at the 'best' or 'most probable' 
native phases. If the native phases are not known 
with certainty, then this procedure will yield inaccu- 
rate values of the lack-of-closure errors (Blow & 
Matthews, 1973). Since a probability distribution for 
the phase is available [(21), for example], improved 
estimates of the lack-of-closure errors may be 
obtained simply by averaging the standard lack-of- 
closure residuals over all native phases, weighting by 
the probability that each phase is correct. We there- 
fore define the 'averaged' lack-of-closure residuals 
-2 -2 and /~2NO follows: E A C E N T ,  E C E N T  a s  

o ECENT----- P(¢j)[Fpn Fp/4(~j)] 2 
j = l  

EACENT=(5 P(~0)[P~H P~,H(~0)] 2 d~o), (27) 

/~INO = (5 P(~O)[A°PH--A~H(~O)] 2 d~o>, (28) 

where the normalized phase probability distribution 
P(~o) includes all information available and the angle 
brackets indicate an average over all appropriate 
reflections in a given range of resolution. 

Estimation of the mean-square residual heavy-atom 
and lack-of-isomorphism structure factors 

Based on the preceding section, we can expect that 
the averaged lack-of-closure residuals defined by 

E AC E NT, (26)-(28) will be reasonable estimates of 2 
2 

ECENT and E2ANO. Also, if we recall (14), (17) and 
(22), it is evident that the averaged lack-of-closure 
residuals may be used to estimate the mean-square 
residual heavy-atom structure factor (H  2) and the 
mean-square lack-of-isomorphism structure factor 
(M 2) at a given resolution. From (14), (17), (26) and 
(27) we have 

n 2 4_ M E - 1~2 _ (or2> _ <O.2H) ' (29) CENT 

H2+ M 2 - 2(/~ 2ACENT-- (or2) -- (O'~,,)) (30) 

where the angle brackets indicate an average over all 
centric or acentric reflections in the appropriate range 
of resolution. The sum of H 2 and M 2 may therefore 
be obtained either from the averaged centric lack-of- 
closure residual or the averaged acentric lack-of- 
closure residual. 

The average anomalous lack-of-closure residual 
/~2N 0 depends on H 2 but not on M 2, so that if 
anomalous differences have been measured, separate 
estimates of H 2 and M 2 may be obtained. Using (22) 
and (28), we may write 

H 2 ~" (K 2>( J~ 2ANO -- (O'2NO)) , (31) 

where the values of K are the same as those used in 
(21). Since the value of K is typically greater than 
unity, it is clear that estimates of H E obtained from 
(31) will generally be fairly coarse. Notice that the 
estimate of H 2 does require an accurate estimate of 
the uncertainties in measurement of the anomalous 
differences (Cr~NO). 

Discussion 

We have shown here that, with reasonable approxi- 
mations, the phase probability distributions given by 
Blow & Crick (1959) and by North (1965) and 
Matthews (1966) can be derived from basic premises. 
Blow & Crick (1959), citing empirical evidence, 
assumed that the errors in observed and calculated 
derivative structure-factor amplitudes were dis- 
tributed in a Gaussian fashion. Approximations 
similar to those we have used led them to ( la ) .  On 
the basis of a detailed analysis of errors, we have 
found that the assumption of Gaussian distributions 
is very reasonable, justifying (1 a). More importantly, 
the present analysis has yielded a straightforward 
interpretation of the E 2 for centric, acentric and 
anomalous differences [(14), (17) and (22)] and an 
improved method of estimating them from the 
averaged lack-of-closure residuals [(26)-(28)]. 

Equations ( la ) ,  (13), (16) and (21) are all approxi- 
mate phase probability distributions. Given our 
assumptions, however, (12), (15) and (20) are exact 
expressions. Nearly any desired degree of accuracy 
in the phase probability distributions can be obtained 
by a suitably precise evaluation of these expressions. 
Green (1979) has analyzed expressions similar to (12) 
with few approximations, and found that, in cases 
where lack of isomorphism was not severe, the result- 
ing phase probability distribution and that obtained 
using (13) were quite similar. We have also carried 
out numerical integrations of (12) and find that the 
resultant phase probability distribution is given very 
precisely by (13) when Ifnl, I~ll and Ilal are all less 
than 20% of F~. 

An error far more serious than the approximate 
evaluation of (12) [or of (15) or (20)] is that caused 
by using inaccurate values of the lack-of-closure 
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errors. A factor-of-two change in the lack-of-closure 
error in ( l a )  is sufficient to convert a probability 
distribution with a 'figure of merit' of 0.45 into one 
with a figure of merit of 0.07, an error far greater 
than that typically caused by using ( l a )  instead of 
(12). This is why we have focused attention on the 
evaluation of these lack-of-closure errors and why we 
suggest the use of the averaged lack-of-closure 
residuals [(26)-(28)] for this purpose. 

In order to determine the effects of this new pro- 
cedure, we have calculated lack-of-closure residuals 
using data from a model native structure and from 
model derivative structures which included heavy- 
atom substitution and which were not completely 
isomorphous with the native structure. Table 2 com- 
pares the estimates of the mean-square lack-of- 
closure residuals obtained from (26)-(28) with their 
expected values from (14), (17) and (22) and with 
the conventional lack-of-closure residuals for a case 
with one derivative and a mean figure of merit of 
0.47. In this test, lack-of-closure residuals calculated 
using the 'best' or 'most probable' phases were 
seriously underestimated, even for centric reflections. 
The averaged lack-of-closure residuals, however, 
were reasonable estimates of the true lack-of-closure 
errors, even in this case with one derivative. Also 
notice that, as predicted by (23) and (24), the mean- 
square centric lack-of-closure residual is essentially 
twice the mean-square acentric lack-of-closure 
residual. 

The mean-square residual heavy-atom structure- 
factor amplitude (H  2) and the mean-square lack-of- 
isomorphism structure-factor amplitude (M 2) may be 
estimated from the averaged lack-of-closure residuals 
using (29)-(31), if the anomalous differences have 
been measured and uncertainties in these measure- 
ments are known. In the example in Table 2, 
anomalous differences were calculated, and in Table 
3 are presented the estimates of H 2 and M 2 calculated 
from (29)-(31) with the data of Table 2. As noted 
earlier, the separate estimation of H 2 and M 2 depends 
on an accurate estimate of the uncertainty in measure- 
ment of the anomalous differences. These estimates 
were available in the present example, but are not 
available in all cases. When H 2 and M 2 can be 
accurately estimated, they may be used to determine 
when the derivative is 'solved', and all remaining 
differences between native and derivative structures 
are due to errors in measurement and lack of 
isomorphism. 

As noted by Einstein (1977), our assumption that 
all a priori sources of phase information are indepen- 
dent of the present calculation is not always strictly 
correct. One set of native structure factors is often 
used in conjunction with each of several derivative 
sets of structure-factor amplitudes. Consequently, the 
phase probability distributions for the various deriva- 
tive-native combinations are not independent. 

Table 2. Estimation of  lack-of-closure errors using 
one derivative 

Native and derivative structure-factor amplitudes were calculated 
from a model for 407 acentric and 56 centric reflections from 2.0 
to 2.1/~ resolution. The models were based on the partially refined 
structure of  melittin form II crystals (space group C2221; Terwil- 
liger & Eisenberg, 1982). In order to introduce non-isomorphism 
between the derivative structure and the native structure, the coor- 
dinates of six protein atoms were moved a r.m.s, distance of  0.8/~ 
in the derivative structure. The actual mean-square 'lack-of- 
isomorphism' structure-factor amplitude (/.,2) in Table 3 was calcu- 
lated using equation (A3) for centric reflections and the analogous 
expression for acentric reflections. The heavy-atom contribution 
to the derivative structure factor was calculated using five arbitrarily 
placed heavy-atom sites of  equal occupancy. The magnitudes of 
the native and derivative structure factors were then calculated, 
and, after addition of  a small random 'observational error', these 
amplitudes were used as the 'observed' native and derivative struc- 
ture-factor amplitudes. The r.m.s, native structure-factor amplitude 
is 140, the r.m.s. 'observational' uncertainty in the native structure- 
factor amplitudes is 1.5, and the r.m.s, uncertainty in the deriva- 
tive structure-factor amplitudes and anomalous differences is 
also 1.5. 

In calculating phase probability distributions and lack-of-closure 
residuals, three of  the five heavy-atom sites were included with the 
correct occupancy in the calculation of the 'estimates' of  the 
heavy-atom structure factors (fn). The 'actual' mean-square 
residual heavy-atom structure-factor amplitude in Table 3 is the 
r.m.s, heavy-atom structure-factor amplitude due to the two sites 
not included in the model. The expected values of the residuals 
were calculated using the data in Table 3. The lack-of-closure 
residuals averaged over all phases were determined using equa- 
tions (26)-(28). Those estimated at the 'true', 'best' or 'most prob- 
able' phases were calculated using the same equations, setting 
P(~0) equal to zero except at the 'true', 'best' or 'most probable' 
phase. 

For each of  the three methods of estimating lack-of-closure 
residuals, phase probability distributions were evaluated using 
equations (16) and (21) which themselves require estimates of  the 
lack-of-closure errors. Therefore, a procedure designed to simulate 
a real situation was followed. For each method, the average value 
of  (F~, n -F~ , )  2 over all centric reflections was used as a starting 
value of the centric lack-of-closure error, and the average value of 
(ziOn) 2 over all acentric reflections was used as a starting value of 
the anomalous lack-of-closure error. The acentric lack-of-closure 
error was always taken to be half the centric lack-of-closure error. 
Phase probability distributions were calculated and new estimates 
of  the lack-of-closure errors were obtained from the corresponding 
lack-of-closure residuals. The new estimate of the centric lack-of- 
closure error was the weighted average of the centric lack-of-closure 
residual and twice the acentric lack-of-closure residual. This cycle 
was repeated once more and the residuals listed were found. 

In calculating the lack-of-closure residuals, only reflections 
which satisfied the relation 

F~,n > 4(or~ + cr~n + H2 + M 2) 

were included. This criterion resulted in the rejection of  21% of  
the centric and 12% of  the acentric reflections. The mean figure 
of  merit for the test was 0-47. 

Native phase used to 
estimate lack-of-closure Mean-square lack-of-closure residual 

residuals Centric Acentric Anomalous 

Expected values 304 154 3.5 
[equations (14), (17), (22)] 

True ~0 270 140 3-5 
Averaged over ~o 330 160 3.4 
'Best' ~o 210 80 1.4 
'Most probable' ~o 210 80 1.3 
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Table 3. Estimation of H 2 and M 2 from the data in 
Table 2 

The r.m.s, residual heavy-atom structure-factor amplitude ( H  2) 
was estimated from the data in Table 2 using equation t22). The 
value of  K was 5.8 in all cases. The r.m.s, lack-of-isomorphism 
structure-factor amplitude ( M  2) was calculated from H 2 and 
equations (14) and (17). 

H 2 M 2 

Actual value 90 210 
Estimates from the single derivative 80 260 

However, as long as the variances o "2 of the observed 
native structure-factor amplitudes are small relative 
to the overall error (½H 2 + ½M 2 + o-PH + o'2), the errors 
in measurement of the native structure-factor ampli- 
tudes will not greatly affect the phase probability 
distribution. 

Caution should be exercised when the various 
derivatives share heavy-atom sites. A substantial cor- 
relation between the phase probability distributions 
obtained for various derivatives may occur when there 
are unknown heavy-atom sites in common in the 
various derivatives. In this case, the residual heavy- 
atom structure factor ~1 is not independent in the 
various derivatives and therefore the phase probabil- 
ity distributions based on the various derivatives are 
not independent. Of course, it is difficult to know 
when two derivatives share unknown heavy-atom 
sites, but it seems likely that, in cases where known 
heavy-atom sites are in common in two derivatives, 
unknown sites are also shared. A similar argument 
applies to the correlation between the lack-of-iso- 
morphism structure factors Ix in various derivatives 
which share heavy-atom sites. 

A Fortran program (HEAVII) which incorporates 
the results described here may be obtained from the 
Protein Data Bank, Brookhaven National Labora- 
tory, Upton, Long Island, New York 11973, USA. 

We thank Drs S. Sheriff, L. Weissman, W. Smith 
and R. Sweet for helpful discussions. This work was 
supported by USPHS grant GM-31299. TCT was the 
recipient of a National Science Foundation Graduate 
Fellowship. 

APPENDIX 

Probability distribution for the lack-of-isomorphism 
structure factor 

Consider a centric reflection. In this case, the native 
structure factor Fp may be written as a scalar (Wilson, 
1949). 

N/2 
F p = 2  Z f~cos(2zrs.x~) (A1) 

j = l  

where fj and xj are the form factors and coordinates 
of atom j, s-= ha*+ kb*+/c* is the position of this 
reflection in reciprocal space, and there are N atoms 
in the unit cell. Then we may write an expression for 

the contribution F~, of atoms present in the native 
structure to the derivative structure factor FpH: 

N/2 
F~,=2 ~ f j cos [27rs . (x j+Sxj ) ]  (A2) 

j = l  

where atom j has shifted position from xj to xj +Sxj 
from native to derivative structures. An expression 
for the lack-of-isomorphism structure factor/.t in this 
case is 

N/2 
/ z=2  ~ f j{cos [27rs . (x j+Sxj ) ] -cos (2r r s .x j )}  

j = l  

(A3) 

or, after rearrangement, 

N/2 
/ , = 2  ~ f j{cos(2~s .xj )  [cos(2~'s.  S x j ) - l ]  

j = l  

- s i n  (2~rs. xj) sin (2ws. 8xj)}. (A4) 

Now, using reasoning similar to that used by Wilson 
(1949), we note that cos (27rs. xj) and sin (2rrs. xj) 
in (A4) vary in an essentially random fashion from 
-1  to 1. Therefore,/~ is the sum of many uncorrelated 
random variables with mean values of zero. Accord- 
ing to the central-limit theorem (Hamilton, 1964), ~t 
will be distributed in a Gaussian fashion with an 
expected value of zero and a mean-square value equal 
to the sum of the mean-square values of the random 
variables. This can be shown to be 

N/2 
(/z2) = 4  E f ] [1-cos(2r rs . t~x j ) ] .  (A5) 

j = l  

If there are many terms in (A5) and the ~xj are 
randomly distributed, this expected mean-square 
value of /z  will characterize all reflections at a given 
resolution (at other resolutions, the form factors f~ 
will be different). This leads to (4a) and a similar 
argument leads to (4b). 

It may be shown that in cases of extreme non- 
isomorphism (for example, native and derivative 
structures unrelated) the lack-of-isomorphism struc- 
ture factor /z will be strongly correlated with both 
the native and derivative structure factors. When the 
magnitude of/.t is small relative to the native struc- 
ture-factor amplitude, however,/z is correlated with 
neither. To show this for centric reflections (as before, 
a nearly identical argument applies to acentric reflec- 
tions), define the correlation a between/z and Fp as 
the average value, over many reflections, of the prod- 
uct of /z  and Fp, divided by the r.m.s, values of/.t  
and Fp: 

2 1/2 2 1/2 
ot=-- ( t zFp) / (  p. ) ( F p )  . ( 3 6 )  

From (A1) and (A3), it can be shown that (lxFp)- 
-½(/x2), so that the correlation a is given by 

-_½(2),/2/(F2),/2. 
When (/2) is small relative to (F2), ~ is clearly small. 
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Expressions for P~,n and ApH in the presence of 
anomalously scattering heavy atoms 

Suppose that all the heavy atoms in the derivative 
structure have the same ratio of 'real' to 'anomalous' 
scattering, given by K = (f+f')/f". Then Frl, the non- 
anomalous part of the heavy-atom structure factor, 
is perpendicular to 8, the anomalous part of the 
heavy-atom structure factor: 

8 = e x p  (i~r/2)Fu/K (37) 

so that the total heavy-atom structure factor is given 
by 

Fu+8=Fi-l[l+exp(iTr/2)/K]. (38) 

If there are several types of anomalously scattering 
heavy atoms present, (A7) may be generalized. Let 

Fn = ~ Fn.j (A9) 
J 

and 

6=~,6j=exp(ilr/2)Y, Fn,ffKj (A10) 
J J 

where F n j ,  8j and Kj refer to all atoms of a particular 
type. Now define the angles c~ and to by 

FH--= [r.I exp (ia), (A l l )  

8-]81exp(ia+i,rr/E+ito ) (312) 

where to is zero if all heavy atoms are identical. We 
may now define an effective value of K which is related 
to the ratio of 'real' to 'anomalous' scattering for this 
particular reflection: 

K -= [ ( I r . I / l s I )  - s i n  t o ] / c o s  to (313) 

where K is equal to each Kj if all atoms are identical. 
Equations (A9)-(A12) may now be combined to yield 

r n + 8 =  Fn[1 +exp (i~12)1K]1[1-181 sin (to)liE.I]. 
(A14) 

If it is assumed that the ratio Kj of real to anomalous 
scattering is large for all the heavy atoms present, 
then lSlsin(to)/lrHI is nearly always small c o m - '  
pared with unity. If this term is ignored, (A14) 

becomes 

FH+8--Fn[l+exp(iTr/2)/K]. (A15) 

Equation (A15) cannot be used directly to calculate 
the total heavy-atom structure factor from its non- 
anomalous part because the factor K (A13) depends 
on both 6 and FH and may vary from reflection to 
reflection. In order to avoid this difficulty, we assume 
that the factor K, based on 6 and Fn, is the same as 
that which can be calculated from the heavy-atom 
model. Then 

6--(fH+'q) exp(i~/2)/K (A16) 

where K is calculated from the heavy-atom model 
using expressions analogous to (All)-(A13).  

Now we may obtain expressions for the total 
derivative structure factor including anomalous-scat- 
tering effects. Once again, let Fpu be the derivative 
structure factor due to the non-anomalous part of the 
scattering from the derivative structure: 

FpH --= F p +  ~ -t- fH + 'q .  (A17) 

Then the total structure factor for one element of this 
Friedel pair may be written as (see Fig. 1) 

FEn = FpH+ 6 (A18) 

and the complex conjugate of the total structure factor 
for the other element of this Friedel pair may be 
written as 

FpH* = F p n -  6. ( 3 1 9 )  

With first-order approximations, this leads directly to 
(18) and (19). 
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