05．1－8 THE PQLYMORPHISM PHASE TRWNSITION OF Lillo CRYSTAL AND THE RELATIVE STABILITY OF \＆β AND B PHASE． By Liang Jingloi and Rac Guanghui，Instituta of Physics， Acodemic Sinico，Beijing，Chino．

Lilo exhibits very complex polymorphism phase transition． There axist 9 phase structures in various temperature ranges （Liang Jingkui，Zhang Yuining，Acta Physica Sinica．．1984， 33. 69．Liang Jingkui，Zhang Yuming．J．Structural Chemistry， 1983， 2 ．81）．At room temperoture the α, β and $-\mathrm{LLiO}_{3}$ con coexist for a long time without changing into each other．The α and $\beta-\mathrm{LilO}_{3}$ con be grown independently from the aqueous solution under different conditions．The th－phase，however，con not be obtoined directly from α or β phoses．It can only be obtaind through melting and middle transition phase by special heat treatment technology．a $-\mathrm{LilO}_{3}$ with its space group PG_{3} is a non－ferroelectric polor erystol having excel－ lent non－linear optical and piezaelectric properties．β and \＆phases belong to the tetragonal and ortharhombic systems， respectively．The specific heats C_{p} of α, β and $\frac{\beta-L i l O_{3} \text { in }}{}$ the temperature ranges of $-100-400{ }^{\circ} \mathrm{C}$ and the latent heat of phase transition are measured by the M－ond L－type 5H－3000 adicbic sconning calorimeter，and fitted in terms of the 5th order palynomial by least－squara method：

$$
C_{p}=a T^{5}+b T^{4}+c T^{3}+d T^{2}+e T+f
$$

The coefficients of C_{p} and latent heats for vorious phase ara shown in Table 1.

The entropies，enthalpies and Gibbs free ener－ gies of α, β and f phases have been derived．From the change of free energy curves vs temperatures，it is shown that a phase is stable below $200^{\circ} \mathrm{C}$ ，while β phase is stoble above $300^{\circ} \mathrm{C}$ ．the \hbar phose is stable in the range of $200-300^{\circ} \mathrm{C}$ ．This result agrees with the phase relation of α, β ，and $\frac{b}{h}$ phoses after a long time heat treatment at constant temperature． The phase tronsition mechonism of $\mathrm{Li}_{\mathrm{i}} \mathrm{O}_{3}$ ．the thermodynomic foctor and the existence of complex polynorphisim are dis－ cussed from the thermodynomic and structural viewpoints．

Table 1

phase	α		2		β
Temp．（ C ）	－100－306	306－400	－100－310	310－400	－100－400
a（10 $\left.0^{-14}\right)$	－6．32993	－1．87651	－38．0230	－4．72794	0.097504
$\mathrm{b}\left(10^{-11}\right)$	5.83610	0.839213	52.9126	2.19111	－0．118268
$\mathrm{c}\left(10^{-9}\right)$	－4．01201	1．66700	－277．362	6.50558	0.253882
d（10－5）	－1．14090	0.618594	6.80859	1.26435	－0．105184
e（10 0^{-3} ）	4.97045	－3．05538	－6．81319	－7．85366	1.44737
$f\left(10^{-1}\right)$	－1．21988	2.69969	5．87136	3.21469	1.92522
$\mathrm{T}_{6}(\mathrm{C})$	248	308	310		
$\overline{\mathrm{a}} \mathrm{H}(\mathrm{J} / \mathrm{g})$	$\begin{aligned} & +11.4 \\ & \left(\alpha=z^{\prime}\right) \end{aligned}$	$\begin{gathered} -4.84 \\ (\gamma \rightarrow \beta) \end{gathered}$	$\begin{aligned} & -4.74 \\ & \left(h_{\rightarrow} \rightarrow \beta\right) \end{aligned}$		

05．1－9 STUDIES ON PHASE TRANSITION OF LiCdBO ${ }_{3}$ ．By Zhou Zicong，Huang Dingzhen，Liang Jingkui，Lin Wei，Yin Kiande． Fujion Institute of Research on the Structure of Matter，Rco－ demio Sinjco，Fuzhou，China．

The pseudo－binary system $\mathrm{LiBO}_{2}-$［dO has been studied by means of thermal analysis and X －ray diffraction．Only one new com－ pound LiCdBn_{3} has been formed in the system，which forms by peritectic reaction at $867 \pm 3^{\circ} \mathrm{C}$ ．There exjst two polymorphic forms in $\mathrm{Li}^{[} \mathrm{CdBO}_{3}$ ，i．e．high temperature phase β and low tem－ percture phase ot，and inversion temperature is $690 \pm 10^{\circ} \mathrm{C}$ ．Be－ couse of the hysteresis of phose transition，when the X－roy powder diffraction was carried out by using Guinier Lenne high temperature comera with heating rate $0.7^{\circ} \mathrm{C} / \mathrm{min}$ ，the phase transition process of $\beta-\mathrm{LiClEO}_{3}$ was found to be $\beta \stackrel{5200^{\circ}}{ } \beta+\alpha+\frac{990^{\circ}}{} \beta$ ，but no phase transjtion of $\alpha-\operatorname{LiciCdB}_{3}$ was ob－ served．For the same reason，no heat effect of phase tronsi－ tion was observed by DTA anolysis with heating rate $10^{\circ} \mathrm{C} / \mathrm{min}$ for both polymorphic forms．
By quenching the samples ofter isothermal heat treatment at $1300^{\circ} \mathrm{C}$ for ten minutes，the amarphous somples were obtained． The high temperature diffraction analysis shows that the crystallization process of amorphous is：
 hysteresis was observed．This result agrees with that of experiment by DTA．The kinetic pracess of both the crystallij－ zotion of amarphous and phase tronsition from β phose into α phose hove been studied by DSC methad．
n powder SHC test shows that the SHG effect in $\alpha-\mathrm{LiCdOO}_{3}$ is about three times as large as that of $\operatorname{ADP}\left(\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}\right)$ ，but $\beta-\mathrm{LiCdBO}_{3}$ has no SHG effect．

The indexing of x－ray powder diffraction pattern indicotes thet $\alpha-\mathrm{LiCdBO}_{3}$ is just soma as LiCdBO_{3}－ I ］（Cokoroba E．B．et a］，耳okJ．AH［CEP．，1979，246，1126）．It belongs to the hexagonal system with the unit call dimension：$a=b=6.307 \mathrm{~h}$ ， $c=3$ ． $262 \hat{h}$ ．$Z=3$ ，the space group is $P \vec{D}$ ．But $B-\mathrm{LiCdBO}_{3}$ is dif－ ferent from $\mathrm{LjCdBC}_{3}-\mathrm{J}$（Cokarosa E．日．et al．Kристалтография， 1980，25，11855）．β－LiCdEO S_{3} belongs to monocljnic system，and only the reflections hikl with $h+k=2 n$ are observed while the reflections h0l with add）are obsent．The unit cell parame－
 Kphctammorpaфhs．23，4日7）and β－LiCdBO 3 are listed in Toble 1 ． The comporison of the unit cell parometers and the indexing results of these three compounds suggest that they are iso－ structural campounds with the space group［2／c．
Because the phase diagrom of pseudo－binary system $\mathrm{LiCdBO} 2_{2}-\mathrm{CdD}$ Oжупое Н．T．et al．Журнол Неорганнческон Химнн．1985，30， 1523）is inconsistent with present work，we chose four som－ ples with composition 15，25，45， 50 mol\％［d0 and treated them according to their experimental condjtions，but can not repect their results．Furthermore，we have found that the dark red color CdO was separoted out for the somples with the composition more than 45 mol\％Cd0 when temperature wos higher than $B 67^{\circ} \mathrm{C}$ ，that shows that CJD and liquid coexist in the system when the temperature is above $867^{\circ} \mathrm{C}$ ，j．e． LiCdBO_{3} is formed by perjtectic reaction．The cause of the inconsistency has been discussed．
Toble 1．The unit cell porameters of $L_{i R B O}^{3}, \mathrm{R}=\mathrm{Cd}, \mathrm{M}, \mathrm{Zn}$ ．
 $\begin{array}{lllllll}\mathrm{LiZneO}_{3} & \mathrm{CZ} / \mathrm{c} & 5.094 & \text { B．} 806 & 10.374 & 31.09^{\circ} & 8 \\ 1 \mathrm{LiAnOO}_{3} & \mathrm{C} / \mathrm{c} & 5.188 & 8.952 & 10.367 & 91.75^{\circ} & 8\end{array}$ $\begin{array}{lllllll}\mathrm{LiMnBO} & {[2 / \mathrm{c}} & 5.188 & 3.952 & 10.367 & 91.75^{\circ} & 8\end{array}$ $\begin{array}{lllllll}\mathrm{LiCdBO}_{3} & {[2 / \mathrm{c}} & 5.253 & 9.072 & 10.875 & 92.97^{\circ} & 8\end{array}$

