08.2-3

THE CRYSTAL STRUCTURE OF A NEW COBALT OXIDE SULFATE, $\mathrm{Bi}_{2} \mathrm{COO}_{3} \mathrm{SO}_{4}$. By I.A. Fanariotis and P.J.Rentzeperis, Applied Fhysics Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece.

The crystal structure of $\mathrm{Bi}_{2} \mathrm{COO}_{3} \mathrm{SO}_{4}$ was determined within the framework of a systematic study of the various phases in the system $\mathrm{CoSO}_{4}-\mathrm{Bi}_{2} \mathrm{O}_{3}$, prepared under different conditions.

The compound was synthesized in a crystalline form by heating a mixture of COSO_{4} and $8 i_{2} \mathrm{O}_{3}$. The crystal structure has been determined from three-dimensional X-Ray diffraction data, collected on a computer-controlled Philips PW 1100 single crystal diffractometer (845 observed reflections). The crystals are orthorhombic, $P b c m, a=$ $7.123(2), b=15.762(4), c=5.416(2) \AA, 8=4$. The positional and thermal parameters were refined by full-matrix, least-squares calculations, to a final $R=0.042$. The structure in layered, with $\left[\mathrm{Bi}_{2} \mathrm{COO}_{3}\right]_{\mathrm{n}}$ layers normal to the a axis, interlinked by 50 groups (Fig. 1).

The Bi atoms, located by MULTAN, occupy two different positions and are seven coordinated, by four 0 atoms belonging to the layer and forming with them square pyramids (average distances : $\mathrm{Bi}(1)-0=2.255$ and $\mathrm{Bi}(2)-0=2.245 \AA$) and three 0 atoms of the sulfate groups (average distances : Bi (1) $-0=2.79$ and $8 i(2)-0=2.95 \AA$). The Bi-0 bonds to the latter may be considered as secondary bonds. The Co atom is six coordinated by four 0 atoms, again belonging to the layer, at the base of a square pyramid (average Co-0 $=2.07 \AA$) and two further 0 atoms of the sulfate group at a distance 2.41 A . The six 0 atoms form a trigonal prism. The coordination of the 0 atoms in a layer is tetrahedral. Distances and angles are normal. The SO_{4} tetrahedron is only slightly distorted with an average $5-0=1.47 \AA$. The layered structure explains very well the plate-like growth of the crystals normal to a.

Fig. 1. Clinographic projection along the c axis.
08.2-4 CRYSTAL STRUCTURES OF SEVEN CADMIUM SELENITES. By J. Valkonen, University of Jyväskylä, Department of Chemistry, SF-40100 Jyväskylä, Finland.

Seven cadmium selenite compounds have been synthesized and their crystal structures have been solved using direct methods and least squares refinement. $\alpha-\mathrm{CdSeO}_{3}$ was found to be isomorphous with corresponding Mg, Mn, $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ and Zn selenites (Kohn, Inoue, Horie and Akimoto, J. Solid State Chem. 1976, 18, 27).

Formula	a(A)	$b(A)$	$c(A)$	$B\left(^{\circ}\right.$)	Z	SPGR
$\alpha-\mathrm{CdSeO}_{3}$	6.278	8.085	5.293		4	Pnma
$\mathrm{B-CdSeO} 3$	5.708	12.828	8.585	101.21	8	$P_{1} 1 / c$
$\mathrm{CaSeO}_{3} \times \frac{3}{4} \mathrm{H}_{2} \mathrm{O}$	9.470	8.763	10.141	117.38	8	${ }^{\text {P2 }} 1$
$\mathrm{CdSe}_{2} \mathrm{O}_{5}$	8.024	11.319	6.020	119.38	4	C2/c
$\mathrm{Cd}_{3}\left(\mathrm{HSSO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}$	9.405	9.147	7.284	112.62	2	$\mathrm{P}_{2} / \mathrm{C}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{2}$	5.714	5.714	20.033		3	R $\overline{3}$
$\underline{\mathrm{Cd}\left(\mathrm{NH}_{3}\right) \mathrm{SeO}_{3}}$	13.306	6.136	5.125		4	Prma

Coordination number of cadmium is six in all compounds except $\mathrm{Cd}_{3}\left(\mathrm{HSeO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}$. This has two different cadmium atoms with coordination numbers 6 and 7. Coordination polyhedron is octahedron for all six coordinated cadmium atoms except $\beta-\mathrm{CdSeO}_{3}$, in which it is trigonal prism. Seven coordinated cadmium forms monocapped trigonal prism. Octahedra around cadmium atoms in $\mathrm{CdSeO}_{3} * \frac{\mathrm{H}_{2}}{4} \mathrm{O}$ are very distorted.

Formula	$R(\%)$	$N_{\text {ref }}$	$N_{\text {as }}$	$C d-O(\AA)$	$\mathrm{Se}-\mathrm{O}(\AA)$
$\alpha-\mathrm{CdSeO}_{3}$	2.1	730	1	2.33	1.71
$\beta-\mathrm{CdSeO}_{3}$	4.4	2826	2	2.31	1.69
$\mathrm{CdSeO}_{3} * \frac{3}{4} \mathrm{H}_{2} \mathrm{O}$	2.4	3652	4	2.30	1.70
$\mathrm{CdSe}_{2} \mathrm{O}_{5}$	2.8	1242	1	2.29	1.66
$\mathrm{Cd}_{3}\left(\mathrm{HSeO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}$	3.4	2553	2	2.35	1.70
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cd}^{\left(\mathrm{SeO}_{3}\right)_{2}}$	1.2	293	1	2.32	1.69
$\mathrm{Cd}\left(\mathrm{NH}_{3}\right) \mathrm{SeO}_{3}$	2.0	831	1	2.33	1.69

$N_{\text {ref }}=$ number of refined reflections ($I>3 * \sigma(I)$)
$\mathrm{N}_{\mathrm{as}}=$ number of asymmetric Cd and Se atoms
Previous table shows average $\mathrm{Cd}-0$ and $\mathrm{Se}-0$ distances, but it does not contain diselenite $\mathrm{Se}-0(-\mathrm{Se})$ or hydrogenselenite $\mathrm{Se}-\mathrm{O}(-\mathrm{H})$ distances, which are 1.80 and 1.75 A , respectively.

A11 compounds form three-dimensional network. NH3 group in $\mathrm{Cd}\left(\mathrm{NH}_{3}\right) \mathrm{SeO}_{3}$ is coordinated to cadmium. Cd-N distance is $2.30 \mathrm{~A} . \mathrm{NH}_{4}$ in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cd}\left(\mathrm{SeO}_{3}\right)_{2}$ is not coordinated to cadmium.

