08.2-5 STRUCTURAL CHEMISTRY OF SELENIUM(II) COM-POUNDS: CRYSTAL AND MOLECULAR STRUCTURES OF NOVEL HALO-GENOSELENATES(II). By <u>B. Krebs</u>, E. Lührs, L. Stork and R. Willmer, Institute of Inorganic Chemistry, University of Münster, D-4400 Münster, Federal Republic of Germany

Compounds with selenium and tellurium in the oxidation state +2 are only moderately stable, in contrast to tetravalent systems. Recently, we reported crystal structures of the first solid halogenoselenates(II) and -tellurates(II) which were obtained as salts with large organic cations. They contain square-planar SeCl₄²⁻, SeBr₄²⁻, and TeX₄²⁻ (X = Cl, Br, I) or planar Se₂Br₆⁻ ions (S. Pohl, A. Schäffer, B. Krebs, Z. Krist., 1983, 162, 180; B. Krebs, A. Schäffer, S. Pohl, Z. Naturforsch., 1984, <u>39b</u>, 1633). Here we report crystal structure investigations on a number of novel oligomeric halogenoselenates(II) which are of special interest with respect to the role of the inert electron pairs at selenium for the structural chemistry of these systems. General structural and bonding relationships can be derived from the results.

The novel $Se_2Br_8^{2-}$ ion (Fig.) which was obtained in the black tetraethylammonium salt (orthorhombic, Pnn2, a = 13.235, b = 24.822, c = 9.353 Å at -130°C, Z = 4) is the first mixed-valence chalcogen halogen compound. It consists of an octahedral SeBr₆ group and a square-planar SeBr₄ unit linked through edges with no apparent electronic exchange between the Se atoms (Se...Se 4.043 Å). The tetraethylammonium salt of the dimeric mixed-ligand complex $[Se_2Br_4(SCN)_2]^{2-}$ crystallizes in space group P2₁/n with a = 8.598, b = 12,250, c = 14,431 Å, $\beta = 102.41^{\circ}$ at -130 °C, Z = 2. Similar to $Se_2Br_6^{2-}$ the

SezBra²⁺ Ion in (Et₄N)₂Se₂Bra

 $Se_2Br_4S_2$ frame of the anion is planar with the linear SCN groups standing perpendicular to this plane. The strong trans influence of the SCN ligands makes the central four-membered ring highly asymmetric.

Se(Se₅)₂²⁻ is a new type of a mixed-valence polyselenide. The red tetraphenylphosphonium salt $(Ph_4^P)_2Se_{11}$ is monoclinic, space group P2₁/n, a = 12.748, b = 14.659, c = 14.037 Å, β = 108.53° (-130°C), Z = 2. The centrosymmetric Se₁₁²⁻ anion consists of two Se₆ rings in chair configuration which are linked in a spirocyclic manner through the central Se(+II) being in a square-planar coordination. Further new halogenoselenates(II) which were characterized structurally as the tetraalkylammonium or tetraphenylphosphonium salts include the pure Se(+II) species Se₃Br₈²⁻ (star-like arrangement of three planar SeBr₄ units with two triply bridging Br), Se₅Br₁₂²⁻ (five linked planar SeBr₄ groups with four tr. br. Br) and the mixed-valence Se₄Br₁₂²⁻ anion (SeBr₆ octahedron and two SeBr₄ squares linked through edges + one associated SeBr₂ molecule). 08.2-6 PREPARATION AND STRUCTURES OF INTER-ALKALI METAL CHALCOGENIDES. By Horst Sabrowsky, Petra Vogt and Alfred Thimm, Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, Germany (F.R.G.).

Inter-alkali metal chalcogenides have been totally unknown until 1982. Our investigation of the phase diagram Na_2O/K_2O lead to the compound NNaO (1) as first specimen of that new class of compounds, whereas calculations of BEREZNOJ (2) showed no compounds being possible in this system. Apart of KNaO, many new inter-alkali metal chalcogenides have been

Apart of KNaO, many new inter-alkali metal chalcogenides have been obtained (Tab. 1) and their structures have been solved by means of X-ray studies.

Table 1: Crystallographic Data of the Inter-alkali Metal Chalcogenides (lattice constants in pm).

	- de					
Name	S.G.	а	b	с	Z	
KNa0	P4/nm	400.2		621.4	2	
RbNa0	P4/nm	409.3		653.1	2	
KLi0	Onca	861.8	640.3	641.7	8	
RbLiO	Prma	656.8	351.8	888.8	4	
NaLiS	P4/nm	402.6		649.5	2	
KLiS	P4/m	431.8		696.2	2	
RbLiS	P4/rm	442.9		723.6	2	
RbNaS	P4/nm	471.1		756.0	2	
KNaS	Prima	781.5	459.7	832.9	4	
RbKS	Prina	822.2	504.3	945.2	4	
KNaSe	Prima	788.4	470.6	870.4	- 4	

These salt-like, very hygroscopic compounds have been obtained by heating stoichiometric mixtures of the binary chalcogenides corresponding to the final composition in sealed ampoules containing vessels of alumina and silver.

Although the binary chalcogenides all crystallize in space group Fm \Im m showing anti-CaF2type geometry, the resulting termary chalcogenides are largely different in structure:

- KNaO (1), RbNaO (3), NaLiS (4), KLiS (5,6), RbLiS and RbNaS have the tetragonal anti-PbFCl-structure (space group P4/nm, Z=2).

 $^{\rm L-C_1, }$, kli0 (7), orthorhombic (space group Pmma, Z=8), shows a very individual structure with the exeptional C.N. 3 observed for Li surrounded by 0.

- KNaS (8) and RbKS crystallize with the anti-PbCl₂-structure (space group Prma, Z=4). - RbLiO shows a structure related to the KNaS-type, but the

- RbLiO shows a structure related to the KNaS-type, but the coordination number of lithium against oxygen is 3. - Investigations of the system Rb₂O/K₂O only lead to a phase of mixed crystals Rb_{1,x} K_xO adopting the CaF₂-structures.

Recently, we characterized KNaSe (orthorhorbic, probably of \mbox{PbCl}_2 -type structure) as the first inter-alkali metal selenide.

Literature:

- (1) H. SABROWSKY, and U. SCHRÖER, Z. Naturforsch. 37b, 818 (1982)
- (2) A.S. BEREZNOJ, Dopovidii AN Ukrainskoi SSR., Serja <u>B</u> 29, H. 11, 1004 (1976)
- (3) H. SABROWSKY, P. VOGT-MERTENS and A. THIMM, Z. Naturforsch. 40b, 1761 (1985)
- (4) H. SABROWSKY, A. THIMM and P. VOGT-MERTENS, Z. Naturforsch. 40b, 1759 (1985)
 (5) H. SABROWSKY and A. THIMM, Naturwissenschaften <u>71</u>, 635 (1984)
- (5) H. SABROWSKY and A. THIMM, Naturwissenschaften 71, 635 (1984)
 (6) H. SABROWSKY, A. THIMM and P. Mertens, Z. Naturforsch.
- 40b, 733 (1985) (7) H. SABROWSKY, P. MERTENS and A. THIMM, Z.Krist. <u>171</u>, 1 (1985)
- (8) H. Sabrowsky, A. THIMM, P. VOGT-MERTENS and B. HARBRECHT, Z.anorg.allg.Chem., in print (1987)