08.2-7 SYNTHESIS AND CRYSTAL STRUCTURE OF A NET KON-CEMTROSYMETRIC B-OCTAMOLYBDATE. BY P. Romana. J. M. Gutierrez-Zorilita ${ }^{\text {a }}$, M. Lartinez-Ripoll ${ }^{\text {b }}$, and S. Gercia-Blancob. adepartamento de Quimica Inorganica. UPY/EHU, kpartado 644,48080 Bilbso. Spain. buEI de Cristalografia, Instituto Rocasolano, CSIC, Serrano 119, 28006 Kadrid, Spain.

Four compounds with the general formula: $(3-\mathrm{HepYH})_{X}(3-E t p Y H)_{4-x}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] . \mathrm{nH}_{2} \mathrm{O} \quad(X=0-4 ; n=0$. 1) heve been prepared. Three of them are isostructurel ($x=0,2,4 ; n=0$) and crystallize in the monoclinfc system, space group $P Z_{1} / n, Z=2$. Parameters for the compound $x=4$ are $a=13.652(2)$, $b=10.887(1), c=13.759(1)$ A. $\beta=90.87(1)^{\circ}, Y=$ 2044 (4) 3 , $D_{x}=2.53 . \quad D_{0}=2.54(1) \mathrm{mg} / \mathrm{m}^{3}$. Only slight differences in cell dimensions have been obseryed when $x=0$ or 2 .
A non isomorphous compound with the formula (3-HepYH) 3 (3-EtpyH) $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (1) ($x=3: n=1$) crystallizes in the triclinic system, space group PI, $Z=2 . a=10.918(1), b=10.985(3), c=18.991(2) \mathrm{A}$, $\alpha=97.19(2), \beta=91.45(2), \gamma=107.30(2)^{\circ}, Y=$ $2152.8(7) \mathrm{X}^{3}, D_{\alpha}=2.456, D_{0}=2.456(1) \mathrm{Mg} / \mathrm{M}^{3}, \mathrm{R}=$ 0.055 and $R y=0.073$ for 6277 obseryed reflexions. Theraogravimetric studies show that the isostructural compounds are anhidrous while the non isomorphous compound contains one water molecule. Ir spectra indicate that the organic bases are protonated and the polyanion presents the vell-knwon infrared spectrum for β-octamolybdates in solid state.
The distinguishing features of compound (1) are its non-centrosyametric polyanion and its extensive hydrogen bonding. The asyametric unit contains three independant 3 -methylpyridinium and one 3-ethylpyridiniua cations, one water molacule and the β-octaalybdate anion.
The planar cations are oriented to perait hydrogen bonds with either zolybdate oxygen atoms or water oxyen atoms. Four different types of hydrogen bonds bave been found: $\mathrm{N}-\mathrm{H} \cdot \mathrm{O}$; $\mathrm{H}-\mathrm{H} \cdot \mathrm{O}$; $\mathrm{OW}-\mathrm{H} \cdot \cdots \mathrm{O}$; and C-H.
The 100_{6} octahedre are distorted and the degres of distortion hes been estimated using different aquations (P . Roman st al. Transition Het. Chem. in press).
08.2-8

STRUCTURES OF THREE SODIUM-CALCIUMGERMANATES. F.Nishi, Saitama Institute of Technology, 1690, Fusaiji, Okabe, Saitama 〒369-02, and Y.Takéuchi, Department of Geological Sciences, Nihon University, Sakurajousui 3-25-40, Setagaya-ku, Tokyo 〒156, Japan

Three new crystalline phases in the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{CaO}-\mathrm{GeO}_{2}$ system were synthesized at around 1500 K and their crystal structures have been studied based on single-crystal diffraction intensities. They include (1) a cubic phase, $\mathrm{a}=15.626(3) \AA, \quad \mathrm{Pa} 3, \quad \mathrm{Na}_{3.70} \mathrm{Ca}_{1.15} \mathrm{Ge}_{3} \mathrm{O}_{3}, \quad 2=16$, (2) a rhombohedral phase, $a=10.788(2)$, $c=13.460(2) A, \quad R \overline{3} m, \quad \mathrm{Na}_{3.0} \mathrm{Ca}_{1.5} \mathrm{Ge}_{3} \mathrm{O}_{3}, \quad Z=6$, and (3) a trigonal phase, $a=10.780(2)$, $c=13.449(2) \AA, \quad \mathrm{P} 3.21, \quad \mathrm{Na}_{2.50} \mathrm{Ca}_{1.75} \mathrm{Ge}_{3} \mathrm{O}_{9}, \quad \mathrm{Z}=6$. The structure of the cubic phase has a marked feature that it consists of twelve-membered rings of GeO tetrahedra (Fig.1). Although a similar ring of SiO, tetrahedra has been reported in Na،CaSisO, (Fischer and Tillmanns, Z. Krist. 166, 245, 1984), the ring in structure (1) is considerably distorted compared to the reported silicate ring. The remaining two phases contain six-membered rings of GeO , tetrahedra and they are based on a structural scheme which is basically similar with that of the structures of sodium calcium silicates reported by Ohsato, Maki and Takéuchi (Acta Cryst., C41, 1575, 1985; Ohsato, Takéuchi and Maki, Acta Cryst., C42, 934, 1986). There are, however, notable differences between germanates (2,3) and the silicates. Firstly, splittings, which were found only for a symmetrical set of oxygen atoms in the silicates, occur for more than a set of oxygen atoms in our germanates. Secondly, a new site for Na, which is missing in the silicates, has been found in our structures.

Fig.1. The configuration of the 12 -membered ring of GeO, tetrahedra in the cubic phase, viewed down [1 $\overline{1} 1]$.

