CRYSTAL STRUCTURE OF HNS,
2, $2^{\prime}, 4,4^{\prime}, 6,5^{7}$ hexanitrostilbene. By F.GERARD and A.HARDY,
laboratoire de cristallochimie minérale, université de Poitiers, 40 av. Recteur Pineau, F-86022 POITIERS CEDEX, France.
Monoclinic, $P 2_{1} / c, a=22.326(7) \AA, b=5.5706(9) \AA$, $\mathrm{C}=14.667(2) \AA, \quad B=110.04(1)^{\circ}, V=1714(1) \AA^{3}, Z_{0}=4$, $\mathrm{D}_{\mathrm{m}}=1.74(1), \mathrm{D}_{\mathrm{X}}=1.745(1), \mathrm{Cu} \mathrm{Ka}_{1} \lambda=1.54051 \AA$, $\mathrm{m}^{2}=13.30 \mathrm{~cm}^{-\mathrm{Y}}, \mathrm{F}(000)=912$, room temperature, $\mathrm{R}=.060$ for 2345 independent reflections, $\mathrm{Pw}=.057$

Two different molecules have a symmetry centre either in $2(d)$ or in $2(c)$. Their benzene planes are parallel and respectively $1.298 \AA^{\circ}$ and $1.428 \AA^{\circ}$ apart. NO_{2} groups are twisted in the range 5.51° to 48.64° with respect to carbon rings. Holecules are tilted with regards to the axes and make an herringbone pattern
The most compact molecules stacking is along \vec{b}.
09.2-7 CRYSTAL AND MOLECULAR STRUCTURE OF 1-0XO-3-PROPOXYAZEPINO[7,6-b] $]$ QUNNOXALINE. By Bruna Bovio, Dipar timento di Chimica Generale, Università di Pavia, Italy.

In the course of investigations of photochemical decompo sition of 2 -azido-1-(3,5-dimethylpyrazolyl) phenazine in n-propylalcool solution, a compound $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ was isola ted from several reaction products. Since the determina tion of structural formula by chemical means appears to be not smooth and IR, H NMR, and mass spectra do not permit to attribute unambiguously the structure to the title compound, it was deemed necessary to carry out a single-crystal X-ray analysis.
Crystals are triclinic: spage group P $\overline{1}$ with $a=7.289(2)$
$b=14.414(5) \mathrm{c}=6.797(2) \mathrm{A} \alpha=83.56(3) \quad \beta=68.73(3)$
$\gamma=86.58(4)^{\circ} z=2$.
The structure was solved by direct methods and refined by full-matrix least-squares to a final R value of 0.047 ($R w=0.024$) for 908 reflections having $I \geqslant 2 \sigma(I)$.

The seven-membered ring exhibits a marked puckering: the puckering parameters, calculated according to Cremer and Pople (J.Am.Chem.Soc.,1975, 97, 1354) are

$$
\begin{array}{ll}
q_{2}=0.604 & \phi_{2}=358.80 \\
q_{2}=0.161 & \left(\phi_{3}=188.5^{\circ}\right) \\
Q^{3}=0.626 & \theta^{3}=75.0^{\circ}
\end{array}
$$

These puckering parameters describe a distorted boat. The direction of the distortion is given by θ, which is smaller than 90°; therefore the ring is distorted from the pure boat in the direction of a chair. Indeed, the bow angle is 44.5°, whereas the stern angle is 24.9°. The double bonds are clearly localized at $N(2)-C(3)=$ $1.277(5)$ and $C(4)-C(5)=1.326(6) \mathrm{A}$, whereas the $C(5 a)-C(11 a)$ bond $=1.418$ (5) which hinges the two conden sed heterocycles, is longer than a double bond, because it takes part in the conjugation within the quinoxaline moiety. The shortening of the $\mathrm{C}(1)-\mathrm{N}(2)$ bond, $1.382(5)$, suggests that there is some electron delocalization bet ween the CO group and the adjacent $N(2)-C(3)$ double bond; on the contrary the long $C(1)-C(11 a)$ bond, $1.519(5) \AA$, rules out any electron delocalization between the CO group and the quinoxaline moiety. All the bonds in the quinoxaline moiety have a partial double-bond character, thus reflecting the aromatic character of the quinoxali ne: indeed the two condensed rings are nearly coplanar (dihedral angle 1.1°) in spite of their individual nonpla narity. With regard to the propoxy chain, it is worth whi le to remark the short $C(3)-0(13)$ ether bond (1.335(5) A) which suggests that there is some electron delocalization between $O(13)$ and the adjacent $N(2)-C(3)$ double bond.

