
O9.2-6 CRYSTAL STRUCTURE OF HNS,
2,2',4,4',6,6'-hexanitrostilbene.
BY F.GERARD and A.HARDY,
laboratoire de cristallochimie minérale,
université de Poitiers, 40 av. Recteur Pineau,
F - 86022 POITIERS CEDEX, France.

Monoclinic, P2₁/c , a=22.326(7)Å, b=5.5706(9)Å, c=14.667(2)Å, β =110.04(1)°, V=1714(1)ų, Z = 4, D_m=1.74(1), D_x=1.745(1), Cu Ka₁ λ =1.54051Å, μ = 13.30 cm⁻¹, F(000) = 912, room temperature, R=.060 for 2345 independent reflections, Rw=.057

Two different molecules have a symmetry centre either in 2(d) or in 2(c). Their benzene planes are parallel and respectively 1.298Å and 1.428Å apart. NO₂ groups are twisted in the range 5.51° to 48.64° with respect to carbon rings. Molecules are tilted with regards to the axes and make an herringbone pattern The most compact molecules stacking is along B.

09.2-7 CRYSTAL AND MOLECULAR STRUCTURE OF 1-0X0-3-PROPOXYAZEPINO[7,6-b]QUINOXALINE. By Bruna Bovio, Dipartimento di Chimica Generale, Università di Pavia, Italy.

In the course of investigations of photochemical decomposition of 2-azido-1-(3,5-dimethylpyrazolyl) phenazine in n-propylalcool solution, a compound C $_{15}^{\rm H}$ $_{13}^{\rm H}$ $_{30}^{\rm O}$ was isolated from several reaction products. Since the determination of structural formula by chemical means appears to be not smooth and IR, $^{\rm H}$ NMR, and mass spectra do not permit to attribute unambiguously the structure to the title compound, it was deemed necessary to carry out a single-crystal X-ray analysis.

Crystals are triclinic: space group $P\bar{1}$ with a = 7.289(2) b = 14.414(5) c = 6.797(2) A α = 83.56(3) β = 68.73(3) γ = 86.58(4) \circ z = 2.

The structure was solved by direct methods and refined by full-matrix least-squares to a final R value of 0.047 (Rw = 0.024) for 908 reflections having I \geqslant 2 $\sigma'(I)$.

The seven-membered ring exhibits a marked puckering: the puckering parameters, calculated according to Cremer and Pople (I.Am.Chem.Soc., 1975, 97, 1354) are

These puckering parameters describe a distorted boat. The direction of the distortion is given by $\boldsymbol{\theta}$, which is smaller than 90° ; therefore the ring is distorted from the pure boat in the direction of a chair. Indeed, the bow angle is 44.5°, whereas the stern angle is 24.9°. The double bonds are clearly localized at N(2)-C(3) =1.277(5) and C(4)-C(5) = 1.326(6) A, whereas the C(5a)-C(11a) bond = 1.418(5) which hinges the two conden sed heterocycles, is longer than a double bond, because it takes part in the conjugation within the quinoxaline moiety. The shortening of the C(1)-N(2) bond, 1.382(5), suggests that there is some electron delocalization bet ween the CO group and the adjacent N(2)-C(3) double bond; on the contrary the long C(1)-C(11a) bond, 1.519(5) $\overset{\circ}{A}$, rules out any electron delocalization between the ${\tt CO}$ group and the quinoxaline moiety. All the bonds in the quinoxaline moiety have a partial double-bond character, thus reflecting the aromatic character of the quinoxal \underline{i} ne: indeed the two condensed rings are nearly coplanar (dihedral angle 1.1°) in spite of their individual nonpla narity. With regard to the propoxy chain, it is worth whi le to remark the short C(3)-O(13) ether bond (1.335(5))which suggests that there is some electron delocalization between O(13) and the adjacent N(2)-C(3) double bond.