09.4-6 LEWIS BASE ADDUCTS OF LEAD (II) IODIDE. NOVEL CHAIN STRUCTURES OF LEAD(II) IODIDE WITH 2-PYRROLIDONE AND ETHYLENEUREA.
By H. Miyamae, M. Horiuchi, G. Hihara and M. Nagata, Department of Chemistry, Faculty of Science, Josai University, Saitama, Japan.

Crystals of PbI_{2} (pyd) $_{2}$ and PbI_{2} (enu) $_{2}$ (pyd=2pyrrolidone; enu=ethyleneurea) were obtained by cooling their saturated N-methylformamide solution. The compounds crystallize in space group $\operatorname{Pc}^{2} 1^{n}$ with $a=13.423(1), b=15.662(1), c=6.6898(6)$ \AA and $z=4$, and with $a=13.287(1), b=15.458(2), c=$ $6.5131(6) \AA$ and $Z=4$, for the pyd and enu compounds, respectively. They are isostructural. The structure of the pyd compound is shown in Fig. I.
The Pb atom is surrounded by four I and two 0 atoms inadistorted octahedron. The pyd and enu molecules coordinate through their 0 atom in trans positions. The two $\mathrm{Pb}-\mathrm{I}$ bond distances, 2.92-3.08 A ; are shorter than that observed in $\mathrm{PbI}_{2}(3.22 \mathrm{~A})$. The other two, $3.54-3.80 \mathrm{~A}$, are too long to regard as ordinary single bonds. One of the I atom only makes the shortest $\mathrm{Pb}-\mathrm{I}$ bond. However, the other forms a shorter and
two longer $\mathrm{Pb}-\mathrm{I}$ bonds in a plane. Consequently, the structures are depicted as the $\mathrm{Pb}_{2} \mathrm{I}_{2}$ plane sharing their opposite sides to be catenated chain along the e.
The angles between the shorter $\mathrm{Pb}-\mathrm{I}$ bonds are $97.5(1)$ and $98.7(1)^{\circ}$, and these between the longer ones are $74.4(1)$ and $75.8(1)^{\circ}$ for the pyd and enu compounds, respectively. The $0-\mathrm{Pb}-0$ bond angles, $162(1)$ and $163(1)^{\circ}$, bending over the two shorter $\mathrm{Pb-I}$ bond regions, seem to indicate that the $6 s^{2}$ electron pair accumulate towards the longer $\mathrm{Pb}-\mathrm{I}$ bonds.

Fig. 1. Perspective view of PbI_{2} (pyd) $_{2}$.
09.4-7 CRYSTALLOGRAPHY OF COMPLEXES OF thiourea and lead (II) Salts. CRystal structures OF PbBr_{2}.tu(I) AND PbBr_{2}. 2 tu(II). By Frank.H. Herbstein,
Moshe Kapon and George M. Reisner, Department of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel 32000.

Mono(thiourea) lead dibromide (form I) crystallizes in space group $P 2_{1}, Z=2$, $\underline{a}=6.026(4), \underline{b}=15.369(6), \underline{c}=$ 4.259(3)A, $\quad B=110.71(1)^{\circ}$. Bis(thiourea) lead dibromide (form II) crystallises in space group $\mathrm{P} 2_{1}, \mathrm{Z}=2$, $\mathrm{a}=$ $10.583(5), \underline{b}=12.457(5), \underline{c}=4.088(3) \mathrm{A}, \quad B=95.61(1)^{\circ}$. Intensities were measured for both crystals on a Philips PW1100 four-circle diffractometer using Mo $\mathrm{K} \alpha$; absorption corrections were applied. The two structures were solved by Patterson thethods and refined to $R_{F}=$ 6.80 and 3.80 多 respectively. The monothiourea complex has an octahedral arrangement of four Br and two tu ligands about the Pb atom, with two Br atoms and two S atoms of tu molecules shared between contiguous edge-sharing octahedra in the c direction and Br atoms at the apices of the octahedra shared in the a direction. Thus there are sheets of octahedra in (010). The crystal studied had a domain structure with a $65: 35$ ratio of the two enantiomorphic forms. The bis(thiourea) complex hes a chain structure extended along c in which one Br and two tu ligands bridge between successive Pb atoms the second Br is linked only to Pb , which is thus seven-coordinated. The structure has some points of resemblance to the other polymorph of this composition (form I, see Herbstein and Reisner, Z. Kristallogr., 169, 83-93 (1984)) but there are considerable differences. Work is underway to determine the absolute structure of this con plex.
09.4-8 THE STRUCTURES OF COMPLEXES OF MERCURY(II) HALIDES WITH TETRAHYDROSELENOPHENE. By C. Stailhandske, Inorganic Chemistry 2, Chemical Center, University of Lund, P.O.Box 124, S-221 00 LUND, Sweden.

The crystal structures of three complexes of mercury (II) halides with tetrahydroselenophene (THSe) have been solved, viz. HgCl_{2}. THSe, HgBr_{2}. 2 THSe and $\mathrm{HgI}_{2} \cdot 2 \mathrm{THSe}$. The $\mathrm{HgCl}_{2} \cdot$ THSe structure (C. Ståhandske and F . Zintl, Acta Cryst., 1986, C41, 1449-1450) is isomorphous with the corresponding tetrahydrothiophene (THT) compound (C.-I. Brändēn, Ark. Kemi, 1964, 22, 495-500). The structures can be described either as comprised of [Cl-Hg-THSe,THI] ${ }^{+}$ cations and Cl^{-}anions or as built up of polymeric halogen-bridged double chains. The same arrangement is also found in $\mathrm{HgCl}_{2} \cdot\left(\mathrm{PMe}_{3}\right)$ (N.A. Bell, M. Goldstein, T. Jones and I.W. Nowell, Inorg. Chim. Acta, 1981, 48, 185-189). The Hg-atoms have distorted trigonal bipyramidal environments in these compounds.
$\mathrm{HgBr}_{2} \cdot 2$ THSe is monoclinic, space group Cc with a $=$ $23.551(3), b=5.1288(5), c=14.596(2) A, B=128.14(1)^{\circ}$, $Z=4 ; \mathrm{HgI}_{2} \cdot 2$ THSe crystallizes in $\mathrm{P}^{\overline{1}}$ with $\mathrm{a}=5.1653(8)$, $b=9.001(1), c=16.884(4) \AA, \alpha=92.21(2), \beta=91.29(2)$, $Y=101.75(2)^{\circ}$ and $Z=2$.
The two compounds are built up of isolated monomeric pseudotetrahedral molecules Hg(THSe) $\mathrm{H}_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ of approximately $\mathrm{C}_{2 \mathrm{v}}$ point symmetry. The $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}$ and Se-Hg-Se angles are 110.1 and 114.8° in $\mathrm{HgBr}_{2} \cdot 2 \mathrm{THSe}$, corresponding angles in $\mathrm{HgI}_{2} \cdot 2 \mathrm{THSe}$ are 120.8 and 109.6°. Similar discrete tetrahedral complexes are found in the compounds $\mathrm{HgCl}_{2} \cdot 2 \mathrm{THT}$ and $\mathrm{HgBr}_{2} \cdot 2 \mathrm{THT}$ (M . Sandström and I. Persson, in preparation) and also in $\mathrm{HgBr}_{2}(\mathrm{py})_{2}$ and $\mathrm{HgI}_{2}(\mathrm{py})_{2}$ (A.J. Canty, C.L. Raston, B.W. Skeleton and A.H. White, J. Chem. Soc., Dalton Trans., 1982, 15-18).

