09.4-15 ORGANOCOBALT COMPLEXES WITH A BUCKLED EQUATORIAL LIGAND. By V. B. Pett, R. W. Jones, A. M. Mulichak, P. L. Choo, J. W. Bacon, D. E. Zacharias, J. P. Glusker, Department of Chemistry, The College of Wooster, Wooster, Ohio 44691.

New cobalt complexes I and II have been synthesized, where $\mathrm{R}=$ methyl, ethyl, 2-methylpropyl, and $\mathrm{L}=\mathrm{OH}_{2}$, imidazole. These complexes, in which the equatorial ligand is distorted due to a seven-membered chelate ring, may serve as models for B_{12} coenzyme, since the equatorial corrin ring in that compound is ruffled.

Synthesis of the equatorial ligand was adapted from literature reports (Martin, J.W.L. et al. Inorg. Chem. (1981) 20 , 814). I is prepared by mixing the equatorial ligand with CoCl_{2} in acetone under argon, followed by exposure to air. II is obtained as the ClO_{4} salt by alkylation or I with RI in the presence of NaBH_{4} and water or imidazole, followed by recrystallization from HClO_{4}. Elemental analyses, as well as ${ }^{2} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are consistent with the structures shown.

I crystallizes in space group $P 2_{1} 2_{1} 2_{1}$, $a=14.017(2), b$ $=29.014(4), c=8.005(2) \AA, Z=8$. Anisotropic refinement of 2915 data gave $R=0.06, R_{W}=0.08$. The "fold angle" between the two halves of the ligand is 4° and 12° in the two molecules, which is as much as that observed in other complexes with considerably more steric demand from axial ligands (Parker, W.O., Jr. et al. Inorg. Chem. (1985) 24, 3908).

Likewise, the first structure of an organocobalt complex II ($\mathrm{F}=$ ethyl, $\mathrm{L}=\mathrm{OH}_{2}$) in this series shows that the equatorial ligand is appreciably buckled (fold angle -7°) ; [c2/c, $a=21.565(5), b=7.330(3), c=$ 25.172(6) $\AA, \beta=100.97(2), Z=8$, 2229 data; relatively high residuals, $R=0.10, R_{W}=0.13$, were due to disordered $\mathrm{ClO}_{4}{ }^{-}$.] The $\mathrm{Co}-\mathrm{C}$ bond length is somewhat longer ($2.010(8) \AA$) than similar
dimethylglyoxime and "Costa" B_{12} models (Marzilli, L. G. et al. Inorg. Chim. Acta (1985) 107, 139), probably due to the additional steric demand of the equatorial ligand.

09.4-16 CRYSTAL STRUCTURES OF SDME COMPLEXES OF LANTHANIDES AND AMJND ACJDS. By Zheng Yifon, and Pan Kezhan. Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou, China.

Some complexes were prepared from on aqueaus solution or 50% dioxane solution containing praseadymium perchloride and α-amino acids. Intensity data have been collected on a CAD-4 diffractometer.
Thare are two types of crystal structure (Type 1 and Type 2). In type 1, a pair of adjacent metal ions are briged by four carboxylate groups, while the type 2 has an infinjte threedimensional network with carboxyl briging group. In these two types of structure, the amino group in amino ocids is not coordinated to Ln^{3}, and the carboxyl groups in amino ocids ore dissociated ond act as the bidentate bridging ligands, of which two oxygen atoms are coordinoted to different metal ions. The metal ions are seporoted from each other by a distance of more than $4 \dot{\lambda}$, so that there are no metal-metal bond between them. There are two types of structure in Glycine, but only first structure type in Mathionina. For different Ln^{3+} ion, however, there ore different structures in Serine. They suggest that steric effect play a predominant role in ditermining structures of the complexes of Ln^{3+} and amino ocids.

complax	spoce	-(k)	$b\left({ }^{\text {a }}\right.$	c(i)	2	R	Type of structur
	group	α	β	γ			
$\mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3}(\mathrm{Dio})_{3}$	$\mathrm{F}_{1} / \mathrm{n}$	11.229	24. 836	12.951	4	0.079	
. $10 \mathrm{H}_{2} \mathrm{D}$			95.09				
	PT	11.475	11.165	14.092	4	0.055	1
$\left.(\mathrm{CJO})_{4}\right)_{3} \mathrm{CH}_{2} \mathrm{O}$		116.02	70.33	101.45			
$\mathrm{Er}_{2}(\mathrm{Sar})_{3}(\mathrm{Dio})_{4}$	C2	15.975	15. 974	15.280	4	0.059	1
$\left(\mathrm{C} 1 \mathrm{C}_{4}\right)_{6} \cdot 1 \mathrm{OH}_{2} \mathrm{O}$			121.55				
$\mathrm{Er}_{2}(\mathrm{Cly})\left(\mathrm{Mat}_{2}\right)_{3}$	PIT	12.375	14.04]	19.074	4	0.091	J
$\left(\mathrm{ClO} \mathrm{O}_{4}\right)_{5}, 12 \mathrm{H}_{2} \mathrm{O}$		80.85	80.72	62. 82			
$\mathrm{Eu}_{2}(\mathrm{Lly})(\mathrm{Hzt})_{3}$	$\mathrm{PZ}_{1} / \mathrm{n}$	13.897	21.770	19.127	8	0.074	1
$\left(\mathrm{Cl} 1 \mathrm{O}_{4}\right)_{5} \cdot 12 \mathrm{H}_{2} \mathrm{O}$			90. 38				
$\operatorname{Pr}(\mathrm{Cly})_{3}\left(\mathrm{ClO} \mathrm{C}_{4}\right){ }_{3}$	PJ	11.558	14. 126	15. 677	4	0.043	2
$7 \mathrm{H}_{2} \mathrm{O}^{+}$		97.05	102. 66	105.32			
$\mathrm{Pr}(\mathrm{Ser})_{3}\left(\mathrm{ClO} \mathrm{S}_{4}\right)_{\mathrm{j}}$	P1	9. 339	12.881	13.215	2	0.062	2
$2 \mathrm{H}_{2} \mathrm{O}^{+}$		59.73	66.59	78. 45			
	PI	11.476	14.028	15. 443			2
$7 \mathrm{H}_{2} \mathrm{O}$		96.67	102.67	105.51			
$\mathrm{Eu}_{2}(\mathrm{Ser})_{3}(\mathrm{Djo})_{4}$	C2	16.082	16.067	15. 374			1
$\left.(\mathrm{ClO})_{4}\right)_{5} \cdot 1 \mathrm{OH}_{2} \mathrm{O}$			121.71				

* Li Xuye and Pon Kazhen, J. of structural chamistry (1985) $4,56$.

