09.5-5 SYNTHESIS, X-RAY STRUCTURE AND ELECTROCHEMISTRY OF $[Pd_{3}(\mu-C0)_{2}(C_{5}Me_{5})_{3}]$ [CF₃SO₃]. By N. Boag, D. Boucher, <u>J.A. Davies</u>, A.A. Pinkerton and R. Syed, Department of Chemistry, University of Toledo, Toledo, Ohio 43606, U.S.A. and Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, England.

Protonation of $[Pd_2(\mu-CO)_2(C_5Me_5)_2]$ (eg with HBF₄ or HSO₃CF₃) in diethýl ether solution leads to formation of $[Pd_2(\mu-CO)_2(C_5Me_5)_3][X]$ (X = BF₄, SO₃CF₃). IR spectroscopy confirms the presence of bridging carbonyls and a noncoordinated anion. Where X = SO₃CF₃ the X-ray structure has been solved. Data are as follows:H₄Pd₃C₃F₂O₅S, M = 929.98, monoclinic, P2₁/m, a = 8.4240(2); b = 720.867(5), c = 10.806(2)Å, $\beta = 108.81(2)^\circ$, V = 1801.5§³, z = 2, D = 1.71 gcm⁻³, λ (Mo K₄) = 0.71073Å, μ = 15.7 cm⁻¹, F(000) = 928, T^a = 21(1)°C, R₂ = 0.032₂for 3112 unique reflections with F² > 30(F²) of 3645 total unique data. The structure consists of an approximately equilategal triangle of Pd atoms (mean Pd-Pd = 2.62A; mean Pd-Pd-Pd = 59.97°) with the two faces of the triangle capped by, triply bridging carbonyls and the three corners capped by n⁻C₂Me₅ ligands. The CF₃SO₃ ion exhibits disorder. This Pd₃ cluster, with 26 metal valence electrons, is closely related to the neutral Ni₃ analog (27 valence electrons) first prepared by Fischer and Palm (<u>Chem.Ber.</u> 1958, 91, 1725) and the CoNi₂(26 valence electrons), CONi₂ (27 valence electrons) and Ni₃ (28 valence electrons) clusters studied by Dahl et al. (<u>J. Am. Chem. Soc.</u> 1982, <u>104</u>, 3054). Cyclic voltammograms of the 26 valence electron Pd₃ cluster measured in 0.1M tetra (n-butyl)amnonium perchlorate in dichloromethane at a Pt working electrode at a scan rate of 200 mV s⁻¹ reveal two discrete redox processes. A reversible reduction is encountered at -0.43 V vs. Ag/AgC1 (Ep(a)-Ep(c) = 97mV; i /i = 1.05) and a second less reversible reduction at -1.22 V (Ep(a)-Ep(c) = 97mV; i /i = 2.28). These data may imply a facile electrochemical interconversion of cationic, neutral and anionic Pd₃ clusters with 26, 27 and 28 metal valence³ electrons 09.5-6 STRUCTURAL VARIATIONS OF BRIDGED Re-Re BONDS IN SOME ORGANOMETALLIC COMPOUNDS. By <u>Hans-Jürgen Haupt</u> and U. Flörke, Anorganische und Analytische Chemie, Universität-GH, Warburger Str. 100, D-4790 Paderborn, FRG. H. Preut, Universität Dortmund, FRG.

Coordination compounds with a covalent metalmetal bond are distinguished in first order one without a bridging atom or group and second order one with such a bridging. According to the last-named type the hitherto known metalmetal bond lengths exhibit considerable elongation and shortening related to the corresponding metal-metal single bond length in the unbridged compound. It is therefore difficult to decide whether or not such a metal-metal bond exists. To support the bond, an analysis of structural parameters is necessary besides assumptions due to Extended MO calculations and other measurements.

This contribution represents the influence of various bridging atoms and different coordination spheres for the Re-Re bonded central atoms in the following series of organorhenium compounds (L = PR_3 , R = C_6H_5):

 $\begin{array}{l} & \operatorname{Re}_{2}\left(\operatorname{CO}\right)_{8}-\operatorname{n}^{L}\operatorname{n}\left(\mu-\operatorname{H}\right)\left[\mu-\operatorname{PR}_{2}\right]\left[\operatorname{n=1},\left(\underline{\mathrm{I}}\right); \ \operatorname{n=2}\left(\underline{\mathrm{II}}\right)\right], \\ & \operatorname{Re}_{2}\left(\operatorname{CO}\right)_{8}\left(\mu-\operatorname{PR}_{2}\right)_{2}\left(\underline{\mathrm{III}}\right), \ \operatorname{Re}_{3}\left(\operatorname{CO}\right)_{9}\left[\mu-\operatorname{PR}_{2}\right]_{3}\left(\underline{\mathrm{IV}}\right), \\ & \operatorname{Re}_{2}\left(\operatorname{CO}\right)_{8}\left[\mu-\operatorname{GaRe}\left(\operatorname{CO}\right)_{5}\right]_{2}\left(\underline{\mathrm{V}}\right), \ \operatorname{Re}_{2}\left(\operatorname{CO}\right)_{6}\operatorname{L}_{2}\left(\mu-\operatorname{GaI}_{2}\right) \\ & \left(\mu-\mathrm{I}\right)\left(\underline{\mathrm{VI}}\right), \ \operatorname{Re}_{2}\left(\operatorname{CO}\right)_{4}\left(\mu-\mathrm{I}\right)_{2}\left(\mu-\operatorname{GaRe}\left(\operatorname{CO}\right)_{4}\operatorname{L}\right)\left(\underline{\mathrm{VII}}\right), \\ & \operatorname{Re}_{3}\left(\operatorname{CO}\right)_{6}\operatorname{L}_{3}\left(\mu-\operatorname{CI}\right)_{3}\left(\mu-\operatorname{GaRe}\left(\operatorname{CO}\right)_{4}\operatorname{L}\right)\left(\underline{\mathrm{VII}}\right), \ \operatorname{Re}_{4}\left(\operatorname{CO}\right)_{12}^{-} \\ & \left(\mu-\operatorname{GaRe}\left(\operatorname{CO}\right)_{4}\operatorname{L}\right)_{4}\left(\underline{\mathrm{IX}}\right). \end{array}$

Their molecular structure have been determined by X-ray investigations and crystal data and selected bond length and bond angles are given in the following table I. The relevant structural factors for the change of the Re-Re bond including packing forces and other features will be discussed.

Table I	s.G.	Core Re _n (µ-X)	d (Re-Re) (Å) Re-(u-X)-Re ([°])	Ref.
(<u>1</u>),(<u>11</u>)	P2./n	n = 2	3,152(1), 3,194(1)	£11
	1'	X = H.P	81.6(1) . 83.4(1)	
(<u>III</u>)	P2./n	2	3,928(1)	
	1.	P,P	102.6(1)	[2]
(<u>IV</u>)	P21/a	3	2.917(4)av.	
		P	73.9(5) av.	[3]
(<u>v</u>)	14 ₁ /a	2	3.139(3)	[4]
		Ga,Ga	74.4(1)	
(<u>VI</u>)	P2,/n	2	3.158(1)	
		Ga,I	70.8(1), 69.6(1)	[2]
(VII)	PI	2	2.925(1)	
		Ga,I,I	70.8(1), 62.7(1) av.	[5]
(<u>VIII</u>)	PI	з	3.185(4) av.	[2]
		Ga,Cl	72.7(2), 79.6(4)	
(<u>IX</u>)	PT	4	2.965(7) av.	[2]
		Ga	67.5(6)	

 H.-J. Haupt, U. Flörke and P. Balsaa, Z.anorg.Allg.Chem. (1986), accepted. [2] H.-J. Haupt, U. Flörke, results unpublished.

[3] H.-J. Haupt and U. Flörke, Inorg.Chem. (1987), submitted.
[4] H.-J. Haupt, U.Flörke and H. Preut,Acta Cryst.C<u>42</u> (1986) 665.

[5] Acta Cryst. C 42 (1986), 275.