$11.2-9$ high ReSolution diffuse x-Ray scattering STUDY OF DEFECT STRUCTURE IN SILICON SINGLE CRYSTALS BY EXPLORING RECIPROCAL SPACE AROUND DIFFERENT LATTICE POINTS WITH A FOUR GRYSTAL X-RAY DIFFRACTOMETER. By Krishan Lal and G. Bhagavannarayana, National Physical Laboratory, Hillside Road, New Deihi 012, India.

Point defect aggregates in nearly perfect single crystals produce anisotropic diffuse X-ray scattering (DXs) from reciprocal space around reciprocal lattice points (relps) (Krishan Lal in synthesis, Crystal Growth and Characterization, (Krishan Lal (ed.), North Folland, Amsterdam, (1982), p. 287). Here, we report results of measurements of diffuse X-ray scattering, made around four different reciprocal lattice points of dislocationfree silicon single crystals grown by the czochralski methoc. The specimens were cut from a boule grown along [111] direction with large surfaces along (111) planes. plane surfaces were ground, lapped and polished along the following four sets of planes: (111), (110), (001) and (ī2). A four crystal X-ray diffractometer was employed for measurement of diffuse scattering. Three dislocation-free (111) silicon plane crystal monochromators were used in the $(+,-,-)$ setting to achieve a Ka_{1}. exploring beam with low values of angular and wavelength spreads. The specimen formed the fourth crystal oriented in the $(+,-,-,+)$ configuration. A MoXa exploring beam was used. DSX measurements were made in two planes of reciprocal space which were perpendicular to each other around each of the following four reciprocal lattice points : 111, $\overline{2} 20,004$ and 224 . In both these planes measurements were made with the scattering vector $\overrightarrow{\mathrm{K}}^{*}$ along four directions. Diffraction curves were recorded before each set of dxs measurements.

The half widths of the diffraction curves recorded for the 111, $\overline{2} 20,004$ and $\overline{2} \overline{2} 4$ reflections were $8.5,7.0,4.5$ and 4.0 seconds of arc, respectively. The ratios of the half widths agree well with those expected
theoretically. The diffuse scattering distribution around all the reciprocal lattice points was observed to be anisotropic with dXS intensity higher on the $\theta>\theta_{B}$ side. Here θ is the glancing angle and θ_{B} is the Bragg angle. This shows that in these crystals, interstitial defects give a dominant contribution to the DXS. The DXS data were plotted on $\log -10 g$ scale and the values of $|\vec{k}|^{*}$ at knee points determined. Knee points are the points on the \log DXS 1 versus $\log \mathrm{K}^{*}$ plots where the slope changes value. The knee points observed with the four relps are 74 in all. The reciprocal of K^{*} values at knee points gives the size factor of point defect clusters. The 74 xnee points cluster around four values of the scattering vector $|\vec{k}|^{*}$ with maximum number around K^{*} values in the range $1-3 \times 10^{4} \mathrm{~cm}^{-1}$. This corresponds to defects clusters of sizes in the range 0.3 $-1 \times 10^{-4} \mathrm{~cm}$. The other size factors are $1.6-2.5 \times 10^{-5}$ cm (11 knee points); $1-1.4 \times 10^{-4} \mathrm{~cm}(14$ knee points) and 2 $-5 \times 10^{-4} \mathrm{~cm}(19$ knee points).
11.2-10 A QUANTITATIVE STUDY OF DIEFRACTED Y-RAY INTENSITIES FROM NATURAL DIAMOND CRYSTALS BY USING MULTICRYSTAL X-RAY DIFFRACTOMETERS AND COMPARISON WITH SILICON CRYSTALS. By Krishan Lal, S. Niranjana, N. Goswami, Vijay Kumar, S.K. Halder and A.R. Verma, National Physical Laboratory, Hillside Road, New Delhi, 110012 , India.

Preliminary high resolution X-ray topographic and diffractometric measurements on natural diamond crystals, made in our laboratory, had shown that natural diamond crystals exhibit anomalously high peak intensities of diffraction maxima, even though their degree of perfection is rather low. Here, we report results of a systematic quantitative study of intensities of diffraction, peak as well as integrated, from a number of natural diamond crystals. A dislocation free silicon single crystal was taken as a reference and all measurements were made on this under identical conditions. A triple- and a four- crystal X-ray diffractometer were used which employ highly monochromated and collimated Ka radiations. For these measurements MoKa, and CuKa, radiations have been used. Specimen diamond crystals are (111) platelets of about 1 mm in thickness and a few ma in area. The exploring Ka beam irradiated an area : $0.2 \quad x-1.2 \mathrm{~mm}^{2}$ on the specimen surface. The $\overline{2} 20, \overline{4} 40,1 \overline{1} 3$ and $\overline{2} \overline{2} 4$ reflections were studied in the Laue (transmission) geometry. Bragg (reflection) geometry was used for measurements made with 111 and 333 reflections. The reference silicon single crystal was disc-shaped (diameter $=23 \mathrm{~mm}$; thickness - 1 mm) with flat surfaces along (111) planes. In most of the experiments the specimen was the third crystal of the difiractometer, aligned in the $(+,-,+)$ configuration. Experiments were also done with the specimen at the fourth crystal position in the ($\left.+_{1}-+_{1},-\right)$ setting. High resolution diffraction curves, section and traverse topographs were recorded. The curvature of the lattice planes was also measured.

Typical half wiaths of diffraction curves of diamond crystals were about 60 seconds of arc, showing that these had rather low degree of perfection. Diffraction curves of silicon single crystals, on the other hand, are very sharg with half widths in the range : $5-10$ seconds of arc. The peak as well as the integrated intensities of all the diffraction curves of diamond crystals are substantially higher than those of silicon single crystals. For example, in the case of 440 reflection (Lave geometry ; MoKe radiation), the peak intensity ratio between diamond and silicon crystals was 7 : 1 and the integrated intensity ratio was $29: 1$. The peak intensity ratio for 333 reflection (Bragr geometry; Moka, radiation) was 11 : 1 and the integrated intensity ratio was 48 : 1 . When the differences in the absorption coefficients and atomic scattering factors of carbon and silicon are taken into consideration, the anomaly further increases. Extinction does not seem to explain the observed differences. Fossible reasons responsible for these results will be discussed.

