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called the structure invariants. 

For fixed enantiomorph, the observed magnitudes IE! 
determine, in general, unique values for all the struc­
tune invariants. The latter in turn, as certain veil­
defined linear combinations of the phases, lead unam­
biguously to unique values for the individual phases. 
Thus the structure invariants serve to link the known 
magnitudes !E! with the desired phases f (the funda­
mental principle of direct methods). By the term "di­
rect methods" is meant that class of methods vhich 
exploits relationships among the structure factors in 
order to go directly from the observed magnitudes jEj 
to the needed phases f. 

For fixed enantiomorph, the value of any structure 
invariant T is primarily determined, in favorable 
cases, by the values of one or more small sets of ob­
served magnitudes jEj, the neighborhoods ofT, and is 
relatively insensitive to the values of the great bulk 
of remaining magnitudes (the neighborhood principle). 
The conditional probability distribution ofT, given 
the magnitudes in any of its neighborhoods, yields an 
estimate for T that is particularly good in the favor­
able case that the variance of the distribution happens 
to be small. 

Host ~smalln crystal structures are rather routinely 
solvable nowadays by traditional direct methods. For 
the solution of macromolecular structures, on the other 
hand, the method of isomorphous replacement is 
universally used, and anomalous dispersion often plays 
an important supplementary role. One naturally 
anticipates therefore that integrating the traditional 
techniques of direct methods with isomorphous 
replacement and anomalous dispersion will strengthen 
our ability to solve complex structures. This goal has 
recently been achieved, and the initial applications 
suggest that the expected improvement is in fact 
realized. 

17.X-5 OPTIMAL SYlmOLIC ADDITION. By H. SChenk and 
R. Peachar, Laboratory for Crystallography, un~vers~ty of 
Amsterdam, N~euwe Achte:rgracht 166, lOlS WV 1\matert.'J.am, The 
Netherlands. 
In many direct prograza systems the &election of the 
starting set l.s ba1Je.a on the convergence proc&clure 
{Germain, G., Mal.n, P. and Woolfson, M.M. (1970), Acta 
cryst. 826, 274. ), Which. starts frcm. a set ~flections 
w~th the~r relat~onahipa and finds the start~ng 

~flect1ons by <Himi:na.ting iteratively the weakest linked 
reflection. In the program .SIMPEL (SChEmk, E. and J<iers, 
c.T. (J.9S5) in G.M. .Sheldriclc et al. (Eds) 
crystallographic computing 3, Oxford, 200-205) th1s 
starting aet is then check&a bY a divergence procedure 
Which e~lorea the access1.bility of all phases from the 
set. Neverthelesa, in a number of cases 5IMPEL fails as a 
result of a poor starting set and therefore -...:a were 
1oalt1ng for alterna:t1ve proceduralil Wh1ch bu~ld up phase 
nets cUrect1y. The optimal sytllbol~c a.dcUtion .is such an 
alternative and determines syntemat~cally the 
theoretically most reliable pha.se sequences. Th.is 
p.!"'!'.>Cedurt! ~s baaed on dynam.ic programm.ing (Bellman, R. 
Dynam.ic Programming, Oxford, 1957) 1n WhiCh at each stage 
of a dec.ision process, the best poss~le decision, 
acco.:ctUng to some predefined cr~ ter~a, ia ll\ade, This 

~~ies for phase extension that the phases are determined 
by means of optimal dec.ia~ons only. The criteria .in the 
dec1s.ion process are baaed on prtibab.il~at.ic arguments and 
result .in a we~ght~ng schema Wh~Ch ~ncludea tr.iplet and 
quartet information and 111 au.i table for symbolic phases as 
wel~. In general the appl~cation of the procedure results 
in a number of different uta of phauJiliJD follOWS and for 
each of thQ!a a llN!UUre HI given Wh.ich ~ndicates ~ta 

expected succesil in the final phase extension. The mean 
phase error of these sets ~a much lower than the error in 
correspond.ing SIMPEL runs and a successful phase 
determination. 
The :reseaxch haa been sporusored. in paxt ey STW, the Dutch 
teChnical research foundation. 

17.X-6 MAXIMUM ENTROPY AND THE FOUNDATIONS OF 
DIRECT METHODS. By Gerard Bricogne, L.U.R.E., 
Batiment 2090, 91405 Orsay, France 

This contribution will review and extend the author's previous work 
on a new approach to direct phase determination, presented in [!J. 

The Maximum Entropy (ME) method provides a practical yet optimal 
computatlonal procedure for constructing conditional probability 
distributions of large numbers of structure factors, given assumed 
phases for a collection or large moduli. Its optimality follows from the 
equivalence of the MEM w!th the "saddlepolnt approximation· (SPA) 
method or calculating asymptotic expansions or joint distributions In 
the presence of "large deviations", the latter being accommodated by 
constantly updating the prior distribution of the atoms In the cell 

This-ME formallsm has now been extended to the case of families of 
related structures made from several types of atoms, with arbitrary 
(complex) structure factors. The numbers of atoms of each type can be 
dlfrerent In each structure of the family. The joint probabll!ty 
distribution or any "cylindrical'" set or structure factors (comprising a 
given set of rerlexlons considered simultaneously across all members 
or the family of structures) can then be obtained, extending the recent 
results of Hauptman and of Karle on the Incorporation Into direct 
methods or Isomorphous replacement and anomalous scattering. Other 
situations not hitherto considered, such as the availability of a contrast 
variation series, can be dealt with by this method. The equivalence 
between ME and SPA continues to hold In this generalised context. This 
derivation of statistical phase relations For arbitrary complex-valued 
scattering factors shows clearly that the source or such relations Is 
the posltivlty of the prior probability distrlbutlon of the atoms, IlQl the 
pos!tlvlty or the electron density. 

The ME formalism has also been extended Into a statistical 
formulation or the molecular replacement method, by deriving Joint 
distributions or structure factors In the presence of known structural 
fra·gments, of solvent regions, of non-crystallographic symmetries, and 
even In the case of multiple crystal forms. These extensions are readily 
merged with those concerning the treatment of families of related 
structures, and shOuld provide a powerful tool for macromolecular 
crystallography. 

Finally, the optimal Gaussian approximations of the conditional 
distributions given by the ME/SPA method have been used 
systematically to construct statlstlcalllkellhood functions from the 
observed data (Including their error estimates). These likelihood 
functions afford a quantitative evaluation of the adequacy of the 
statistical model used to derive the conditional distribution In the first 
place. Their numerical optimisation affords a way of Improving the 
statistical model, and In particular of refining the phase values 
associated to large moduli to make up the constraints: this refutes the 
commonly held view that "the ME method cannot refine phases·. 
Furthermore, the !!kellhood funct!ons have been obtained In a 
sufficiently general form to be able to consult not only single crystal 
data, but also fibre diffraction and powder diffraction data; they can 
thus serve to extend the use of direct methods to these data. 

It Is this author"s firm belief that this extended ME/SPA formalism 
and the associated likelihood functions constitute a powerful universal 
framework w!thln which all sources of phase Information can be rtrst 
detected, then optimally combined, through a single basic computational 
mechanism In which- perhaps surprisingly- phase Invariants never 
appear expllcltly. 

[I] G. Bricogne: "Maximum Entropy and the foundations of Direct Methods'" 
Acta Cry st. ( 1984} 6:!Q, 41 0-445. 


