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17.4-1 ORIGIN-DEFINING RESTRAINTS IN
POLAR SPACE GROUPS, By H.D Flack, Laboratoire de
Cristallographie, University of Geneva, 24, quai
E.-Ansermet, CH - 1211 Geneéve 4, Switzeriand, and
D, Schwarzenbach, Institut de Cristallographie, University
of Lausanne, Batiment des Sciences Physiques, CH - 1015
Lavsanne, Switzerland.

The origin in a polar space group is commonly defined by
constraining one positional parameter for each polar
direction fp, It is widely, but erroneously, believed that the
heaviest atom is best suited for this purpese. A general
linear constraint between atomic coordinates x;, {1 £1<3,n

identifies the atom) is given by 2 2, QjnXip = C = constant.
We define the displacement vector u by the components u; =

Zn a5 Any constraint with u parallel to f defines the origin.
G. Bernardinelli and H.D. Flack (Acta Cryst.,, 1985, A4l,

500-511) have shown that the polar directions are
eigenvectors associated with the eigenvalues of +1 of the

idempotent matrix 0 = (1/G) Eg S where the 5 are the
3x3 matrices representing the point group of order G.
Origin-defining constraints therefore satisfy the condition
¥ = u. Conversely, constraints satisfying Qu = 0 do not
define the origin. Is any particular choice of constraints to
be preferred ?

The unconstrained normal-eguations matrix A of a
structure with P polar directions has P zerp-eigenvalues
whose eigenvectors ¢, have components gy = fjp whenever

the kth variable is a coordinate xy,, and zero otherwise. This
identifies the most natural origin-defining constraints as

2 fipZn Xin = Cps p2 fipZn 5y =0, {1

the 8x being the parameter shifts. Any set of shifts obeying
(1) is a solution of the unconstrained normal equations. By
intreducing (1) as P restraint equations with weight w, all
atoms are treated equally, This is most easily achieved by
modifying the matrix A : for every pair of variahles, ki,
being x; and x; of the same or different atoms, a constant
equal to w@j; is added to Ayy. The cormesponding variances

and covariances will then obey the P equations
Zij fipfipZnm coV (Xin, Xjm) = 1w, 2)

Of ail possible origin-defining restraints, (1) results by (2)
in the smallest mean absolute values of the variances and
covariances. The methed also insures a good convergence of
the least-squares calculations. It has already been suggested
as & possible procedure by 1.5, Rollett, T.G. McKinlay and
N.P.H. Haigh (Crystaliographic Computing Techniques, ed.
by F.R. Ahmed, pp. 417-419, 1976, Copenhagen :
Murnksgaard), but does not seem to have attracted much
attenticn.
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17.4-2 MODERN CPTIMIZATION TECHNIQUES IN
STRUCTURE 1.EAST SQUARES REFINEMENT COMBINED
WITH DISTANCE RESTRICTIONS. by B. Krisemann, W.
Hoffmann & M. Kroll, Institut f. Mineraiogis, Corrensstrafie
24, D-4400 MUnster, Federal Republic of Germany.

. Crystal structure refinement as a highly nonlinear least

sguares problem is generally treated with computer pro-
grams based on the ordinary Gauss-Newion method. it is
weoll known that this method bears some typical disadvan-
tages like oscillation or divergence, which sometimes may
occur, avan if the starting valuss of the variable parameters
are chosen close to the solution of the problem. In order
to improve local and global convergence, two modern opti-
mization algorithms are now used Iinstead of the common
Gauss-Newton algorithm. One is NLSCON according to a
modified Gauss-Newton method (Deuflhard, P. and
Apostolescu, V.: TUM-Report 7607, 1976), the other is
OPRQP after a variable matric method (Bartholomew-Biggs,
M. C.. Nonlinear Optimization, Theory and Algorithms,
Dixon, L..C.W. & Szegd, G.P. (eds.), Birkhduser, Bosion,
1980). Both were adapted to deal with the axtensive prob-
lem of structure refinement. They form the conceptionai
basis of a new program named MS-FQO.

By means of a simple two-dimensional structure model, the
new, as well as the Gauss-Newton algorithm, weare analysed
and compared. For application of the Gauss-Newton
method an improved verslen MS-FLS of the well known
Busing-Martin-Lovy program was usad. Significant diffar
ences were found in their convergence behaviour. These
are illustrated by mapping least squares sums before and
after refinement, While MS-FLS shows a stroag and fast
local convergence, the modifiod Gauss-Newton aigorithm
NLSCON has s wider convergence domain, but sometimes
a worse local convergence rate. Occasionally, the sams
loss of the local convergence appears with OPRQP includ-
ing the variable metric method; howevar, this slight disad-
vantage can be tolerated in view of the rather good glebal
convergance behaviour, which has further been improved
by modifications of the sc-calied line search.

Furthermore, MS-FQO was comparad with MS-FLS using
intensity data of the KAIGe;QOyg feld spar structure previously
refined by U. Breit, Miinster (pers. comm.). Starting pa-
rametars were artificially affected by random errors, until
both programs failed to refine.  Obviously, the advantage
of MS-FQO over MS-FLS, as found with the simpie two-
dimensicnal modei, diminishes, when the dimension of the
ieast squares problem increases. Nevertheless, in the cass
of OPRQP an appropriate strategy including reduction of the
numbar of variables lead ¢ a successful refinemant,
whereas MS-FLS stiil failed.

Even more efiective proved another feature of MS-FQO.
For the first time, distance restrictions for atoms can be
treated as rea! mathematical constraints in the sense of
optimization thecry. Starting with the same bad parameters
as before, equality restrictions in NLSCOMN for the
tetrahedrally coordinated atoms lead to improved values,
which warranted easy refinemsnt. The prescribed distances
could be varied in & surprisingly wide range, as long as the
given values were in accordance with the coordination.

In general, using the modarn algorithms thers is a greater
chance to attain the desired solution, aspecially if the start-
ing values are far off the correct ones, Often a combined
application of both OPRQF and NLSCON promises fo be the
most effactive.



