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17.4·1 ORIGIN-DEFINING RESTRAINTS IN 
POLAR SPACE GROUPS. By H.D Flack, Laboratoire de 
Cristallographie, University of Geneva, 24, quai 
E.-Ansermet, CH - 1211 Geneve 4, Switzerland, and 
D. Schwarzenbach, Institut de Cristallographie, University 
of Lausanne, Bitiment des Sciences Physiques, CH- 1015 
Lausanne, Switzerland. 

The origin in a polar space group is commonly defined by 
constraining one positional parameter for each polar 
direction fp. It is widely, but erroneously, believed that the 
heaviest atom is best suited for this purpose. A general 
linear constraint between atomic coordinates Xin (1 .::; i:::; 3, n 

identifies the atom) is given by Li Ln ainXin = C = constant. 
We define the displacement vector u by the components Ui = 

Ln ain· Any constraint with u parallel to f defines the origin. 
G. Bemardinelli and H.D. Flack (Acta Cryst., 1985, L>.:!.l. 
500-511) have shown that the polar directions are 
eigenvectors associated with the eigenvalues of + 1 of the 

idempotent matrix !l = (1/G) Lg Sg where the Sg are the 
3x3 matrices representing the point group of order G. 
Origin-defining constraints therefore satisfy the condition 
flu= u. Conversely, constraints satisfying flu= 0 do not 
define the origin. Is any particular choice of constraints to 
be preferred ? 

The unconstrained normal-equations matrix A of a 
structure with P polar directions has P zero-eigenvalues 
whose eigenvectors qp have components qkp = fip whenever 
the kth variable is a coordinate X in, and zero otherwise. This 
identifies the most natural origin-defining constraints as 

the Ox being the parameter shifts. Any set of shifts obeying 
(1) is a solution of the unconstrained normal equations. By 
introducing (1) asP restraint equations with weight w, all 
atoms are treated equally. This is most easily achieved by 
modifying the matrix A : for every pair of variables, kl, 
being Xi and Xj of the same or different atoms, a constant 
equal to wflij is added to AkJ. The corresponding variances 
and covariances will then obey the P equations 

(2) 

Of all possible origin-defining restraints,(!) results by (2) 
in the smallest mean absolute values of the variances and 
covariances. Tne method also insures a good convergence of 
the least-squares calculations. It has already been suggested 
as a possible procedure by J.S. Rollett, T.G. McKinlay and 
N.P.H. Haigh (Crystallographic Computing Techniques, ed. 
by F,R. Ahmed, pp. 417-419, 1976. Copenhagen : 
Munksgaard), but does not seem to have attracted much 
attention. 

17.4-2 MODERN OPTIMIZATION TECHNIQUES IN 
STRUCTURE LEAST SQUARES REFINEMENT COMBINED 
WITH DISTANCE RESTRICTIONS. by R. KrQsemann, W. 
Hoffmann & H. Kroll, lnstitut f. Mineralogie, CorrensstraBe 
24, D-4400 MUnster, Federal Republic of Germany. 

Crystal structure refinement as a highly nonlinear least 
squares problem is generally treated with computer pro
grams based on the ordinary Gauss-Newton method. It is 
well known that this method bears some typical disadvan
tages !ike oscillation or divergence, which sometimes may 
occur, even if the starting values of the variable parameters 
are chosen close to the solution of the problem. In order 
to improve local and global convergence, two modern opti
mization algorithms are now used instead of the common 
Gauss-Newton algorithm. One is NLSCON according to a 
modified Gauss-Newton method (Deuflhard, P. and 
Apostolescu, V.: TUM-Report 7607, 1976), the other is 
OPRQP after a variable metric method (Bartholomew-Biggs, 
M. C.: Nonlinear Optimization, Theory and Algorithms, 
Dixon, L.C.W. & Szeg6, G.P. (eds.), Birkhauser, Boston, 
1 980). Both were adapted to deal with the extensive prob
lem of structure refinement. They form the conceptional 
basis of a new program named MS-FQO. 
By means of a simple two-dimensional structure model, the 
new, as well as the Gauss-Newton algorithm, were analysed 
and compared. For application of the Gauss-Newton 
method an improved version MS-FLS of the well known 
Busing-Martin-Levy program was used. Significant differ
ences were found in their convergence behaviour. These 
are illustrated by mapping least squares sums before and 
after refinement. While MS-FLS shows a strong and fast 
local convergence, the modified Gauss-Newton algorithm 
NLSCON has a wider convergence domain, but sometimes 
a worse local convergence rate. Occasionally, the same 
loss of the local convergence appears with OPRQP includ
ing the variable metric method; however, this slight disad
vantage can be tolerated in view of the rather good global 
convergence behaviour, which has further been improved 
by modifications of the so-called line search. 
Furthermore, MS-FQO was compared with MS-FLS using 
intensity data of the KAJGe30 8 feld spar structure previously 
refined by U. Breit, MUnster (pars. comm.). Starting pa
rameters were artificially affected by random errors, until 
both programs failed to refine. Obviously, the advantage 
of MS-FQO over MS-FLS, as found with the simple two~ 
dimensional model, diminishes, when the dimension of the 
least squares problem increases. Nevertheless, in the case 
of OPRQP an appropriate strategy including reduction of the 
number of variables lead to a successful refinement, 
whereas MS-FLS still failed. 
Even more effective proved another feature of MS-FQO. 
For the first time, distance restrictions for atoms can be 
treated as real mathematical constraints in the sense of 
optimization theory. Starting with the same bad parameters 
as before, equality restrictions in NLSCON for the 
tetrahedrally coordinated atoms lead to improved values, 
which warranted easy refinement. The prescribed distances 
could be varied in a surprisingiy wide range, as long as the 
given values were in accordance with the coordination. 
In genera!, using the modern algorithms there is a greater 
chance to attain the desired solution, especially if the start
ing values are far off the correct ones. Often a combined 
application of both OPRQP and NLSCON promises to be the 
most effective. 


