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17.4-3 THE USE OF A WINDOW FUNCTION TO
REFINE PARTIALLY OVERLAPPED TWIN DATA. by
A, David Rae, School of Chemistry, University of New
South Waleg, Kensington, N. §, W., Australia.

Monoclinic crystals of (SMAP),Cu3Clg where SMAP is the
5-methyl-2-amino pyridinium ion have cell dimensions a
3.917A, b 24.07A, ¢ 12.18A, B 104.14°; P2y/c, Z=2.
Twinning causes the twin components of 0,k,2 data to
overlap perfectly but the angle of 8%.82% between
2%-0.75¢* and ¢* causes h=2n data to partially overiap,
while h=2n+1 data is resolved. Mounting a crystal so that
¢* is approximately normal to the axis of the §—circle gave
maximum values of Ay 0.083°, Aw 0.36° and AB 0.075° to
describe the shift in four circle diffractometer angles
necessary to locate the twin related h,k,~2—1.5h reflection
in the diffracting position rather than the bk, 2 of the first
component, Mo-K,, data was collected using a 9/26 scan
on a CAD4 diffractometer. The searched reciprocal laitice
was for the first component and was accurasely determined
using h=2n+1 and h=0 data only,
A 4mm high slit at a distance of 173mm implied an angle of
Ayx=0.33" to shift a reflection from the centre of the slit to
the top edge. A slit width of (1.3 + tanB) mm implied an
angle of Aw = (0.108+0.083tanB)’ to shift a reflection
from the centre to the edge of the slit.
This cheice of parameters allowed partial resolution of
h=2n data and a refineable window function

Wplaw) = 0.5~ 0.5 sin{™; JAw| - (p+p,tan®)] /pa}
was used to modify the twin ratio to (1-a) oW {Aw)
where W (Am) =1 if the argument of the sin function is
less than — T/, and O if the argument is greater than ™/,.
Values of p;=0.116(3)°, pp=0.080(7)", p3=0.118{4)" and
(1-a)/a=0.687(3)/0.315(5) were obtained from least
squares refinement of the structure using RAELSE7. p,
and p, are consistent within the reliability of the cell
parameters. A final value of R,=0.030 was obtained for
data considered cbserved {I>3c(i}} with R, 0.024(h=0),
0.028(h=1), 0.034(h=2), ¢.02%(h=3}, 0.041(h=4). The
method of data collection increased the distinction between
twin related reflections without harming the ultimate
refinement.

COMPUTATIONAL METHODS AND ERRCOR ANALYSIS

17.4-4 MAXTMUM LIKEHOOD DETERMINATION OF
PARAMETERS FOR POWDER, LAUE AND DIVERGENT BEAM
PATTERNS, By Edmund Ratajczyk and W.A, Keller,
Instituto de Fisica, Universidade Federal da
Rahia, Salvador, Brasil.

A general approach for any experimental
arrangement is developed inm which a number of
directly measured magnitudes or data is used to
calculate a substantially smaller nuwber of
parameters, considered as results. A mathematical
model of experiment is set up which enables .
essantial reverse calculations of the "theoric"
values for the whole data set. Some additional
parameters are necessarily introduced to
complecte the mathematical model.The calculaticns
are realized by a numerical procedure unique
for the "experiment of interest. Convergence of
the preocedure is checked by 8 minimum variance
criterium based on the assumption of the normal
distribution. ¢f all the measured magnitudes.
For each particular data set a linear
statistical model 1s postulated. The maximum
likehood or "best' values of all the parameters
together with their standard deviation are
defined under validity of the linear model. The
limit value of variance sets the overall
precigion effectively attained in the
particular realization of the experiment. The
procedure has been applied for the powder, Laue
and divergent beam techuniques. '

17.5-1 4 RATIONAL DEPENDENCE SCREENING TEST.

By J.8 Rutherford, Department of Chemistry, University
of Transkel, Private Bag X5092, Umtata, Transkei,
Southern Africa.

The probability that s points chesen at random on 8
three dimensional lattice satisfy the primitivity
condition is Ltls} t{s-1) &(s=2}] -1, where ¢ is the

Riemann zeta function. Applied te the reciprocal
lattice, thig provides a method of estimating whether,
for example, such a non-primitive arrangement of

strong reflections could occur by chance or represents a
genuirie case of rational dependence, or of a commensur-
ate superlattice. However, when considering potential
sublattices in practice, only those belanging to the same
Laue class are of any interest, in which case the
formula above only holds for Laue class 1, ie the tri-
clinic space groups P1 and FT. ¥or all other space
proups, we must consider the effect of choosing s points
at random together with all the other peints related to
them through the diffraction symmetry. There are
then 24 cases in all, since the expression will be
identical for space groups belenging to the same
“"Fatterson symmetry', that iz the same Lauve class and
lattice type. These expressions have been derived, and
their form in 2ll cases was found to be A(s)/f(s} where
f depends only on the Laue class, and is a product of the
sums  of infinite series, chiefly =zeta functions,
but also Diriehlet L functions. A in turn derives from
the lattice type, but wvaries depending on what other
lattice types exlst in that Laue class, and are there-
fore available as potential sublattices. It represents
a correction to one prime number {p) term in the infinite
product form of f(s), the term adjusted being the p=2
term in the monoclinic, ortherhombic, tetrapgonzal and
cubic crystal classes, and the =3 term in the trigonzl
and hexzgenal classes. The various formulas have been
evaluated for appropriate values of s and some examples
of their application will be given.



