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20.4-12 INCOMMENSURATE PHASES AND
INVAR EFFECT. V.Sh. Shekhiman, T.K, Barsamian,
S, S, Khasanov, Institute of Solid State Physics
Academy of Sciences of the USSR, Chernogolovka

As has been found (S,S.Khasanov, V.Sh.Shekhtman
Ferroelectrics, 1986, v67, 47-54), three—dimensional

modulation is observed in proustite (AgaAsSS)(RZic)

in the incommensurate phase (IC) range (50260 K).
SnyP,Seg (P2,/c) displays one-dimensional modu-
lation (7T, K.Barsamian, S.S,Khasanov, V, Sh,Shekht-
man, Yu,M\Vysochanskili and V,Yu,Slivka, Ferroelect—
rice 1986, v67, 47-54) in the IC range (197-225K)
adjacent to the ferrceleciric transition, In _the tempe-
rature ranges indicated these crystals showed “satel-
lite reflections and the temperature dependences of
wave vectors were measured by X-ray diffraction
methods, However, the characteristic feature of the ~

main reflection in the IC ran-

doniz A ge, that is, the temperature
L10-t | e dependence of the interpla-
020 | S 19950 nar spacing of the basic
lattice and the intensity, are
1992s most noteworthy. The invar
effect, that is, the tempera-
ture independence of the
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temperature dependence of
the interplanar spacings of
L . the main lattice, dqgg and
L xw02 dpp1 : for proustite and
P SnyP,Seg, respectively. In

' this respect it is of interest
whether an invar eifect
exists in the IC range,when
the conceniration of one of
the components of the mixed
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compound SnyPs(SeS); whose phase diagram de-
picts the Lifshitz point EFig.z), is varied, The tem—
perature dependence of d(0012) of system SnyP,
(Seq_ySx)g was measured for X=0; 0,2; 0.6; 0.8
and 1 (Fig.1). An invar effect was found to exist or
compositions with X=0.6; 0.8; and 1., Satellite reflec—
tions, whose wave veciors varied smoothly with tem—
perature, were observed for the same compositions
in the ranges, corresponding to the invar effech
This is an indication that the limits of the invar ef-
fect fix unambiguously the IC ones, When the crys-—
tal composition concentration is changed, the linear
coefficients of thermal expansion vary essentially
beyond the IC range, whereas the invar effect re-
mains stable. The temperature range of the invar
effect was used for const-
TK} ructing the T-X phase
diagram (Fig.2). The triple
point on the phase diagram
terminated the line separa-
ting the para- ferroelectric
second order phase transi-
tion, then the line diverges
into the para- IC second
order phase transition line
SoPSe o:z of4 0.6 Y Sa0S, and the IC - ferroelectric
x first order phase transition
line, So; the triple point is by defination the
Lifshitz point. The width of the IC temperature ran-
ge satisfies the relation Ti-Tc=A(X—XL> , where

A=53,7 and XL=O. 28 ,
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lattice parameter, was obser-

SYMMETRY AND THE CLASSIFICATION OF STRUCTURES

20.4-13 STATIC AND DYNAMIC STRUCTURE oF
QUASICYSTALS AND OTHER INCOMMENSURATE CRYSTAL PHASES. By
R. Currat eand T. Janssen, Institut Laue-Langevin,

Grenoble , France and Institute for Theoretical Physics,
University of Nijmegen, The Netherlands.

Incommensurate crystal (IC) phaeses in general and
quasicrystals in particular, have symmetry properties
that are appropriately described in a space with more
than 3 dimensions {de Wolff, Janner and Janssen). This
higher~dimensional "superspace" approach may be applied
to describe the structure, the diffraction pattern and
certain physical properties.

The general expression for the geometric structure
factor, fundamental for the structure determination, as
given for IC phases by de Wolff (1977) and Yamamoto
(1982) may be used ,for example, in the particular cases
of modulated structures, discommensuration type
structures and quasicrystals. The central idea here is
that the structure factor for an IC phase is in one-to-
one correspondence with that of a periodic structure in
more dimensions.

It has been shown that macroscopic properties as the
morphology yield information on the microscopic
structure as well (Rasing, Dam and Janner). The
higher-dimensional approach to the morphology may also
be generalised to the case of quasicrystals.

For the dynamic  structure factor & general
description may be given in terms of the eigenmodes of
the structure. It requires a formulation of the lattice
dynamical problem for IC phases, which can also be given
in higher-dimensional space. It is specified for the
various classes of IC phases.

Using the treatment of lattice wvibrations in the
superspace approach one may discuss the behaviour of the
Debye-Waller factor for the various classes of IC
phases: modulated structures, composite crystals and
quasicrystals. The most important contributions to this
DW factor will be discussed.

20.4-14 DISORDER, AVERAGE STRUCTURE AND SUBGROUPS
By 0. Jarchow, Mineralog.-Petrogr. Institut der Univer-
sitdt Hamburg, Germany.

In disordered structures besides diffuse maxima frequent-
ly occur groups of sharp maxima, which are describable
by a pseudoselection rule. This main maxima belong to an
average structure with regular space group.
Taking into account also the diffuse maxima, the cell of
the average structure must be enlarged in 1, 2 or 3 di-
mensions. The disordered structure is built up by many
ordered domains of different sizes. Each domain has sing-
le crystal character, but unlike domains can be structu-
ral different. In most of the 0D structures this domains
are in close t,k-subgroup relationship to the average
structure (Hermann, Z.Krist, 1929).
t= transl. equivalent subgroups. Owing to the decrease in
polnt group symmetry, when the translational group is
preserved and k= class equivalent subgroup, with the sa-
me point group, but différent translation lattices.Such
subgroup relations are listet up for disordered polytypes,
built up by equivalent layers.
The practical use of subgroup tables in structure deter-
mination of polytypes may help to understand the princip
les. l.step: The diffraction pattern must be in standard
'orientation, that means c* is parallel to diffuse streaks
The supercell must be multiples of the average cell
(mA, nB, pC with m >n). 2.Step: The possible space group
of the average structure is to be determined from sharp
maxima only. 3.5tep: The enlargement factors of the su-
percell are to be determined (usual 2,1,1; 2,1,2; 2,2,1;
2,2,2 for subgroups of the tetragonal system) and also
the Bravais type of the a,b-net (P or C-net for 2,2,1 or
2,2,2). The information of 1.-3. are sufficient to find
the possible symmetry of the t,k-domains. The space group
of the average structure gives the entrance of the row
and the enlargement factors the column in the determina-
‘tion tables of subgroups.



