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Abstrac t  

A 'geometric element' is defined, for any given sym- 
metry operat ion,  as a geometric item that allows the 
operation (after removing any intrinsic translation) to 
be located and oriented. In the case of  an inversion, 
a (screw-) rotat ion or a (glide-) reflection, it is respec- 

* Appointed 14 November 1984 and 10 August 1987 (see Acta 
Cryst. (1986). A42, 64 for original membership) under ground rules 
outlined in Acta Cryst. (1979). A35, 1072. Final Report accepted 
10 January 1989 by the IUCr Commission on Crystallographic 
Nomenclature and 15 March 1989 by the Executive Committee. 

t Present address: Institut f/Jr Kristallographie der Universitfit 
Tiibingen, Charlottenstrasse 33, D-7400 T/ibingen, Federal 
Republic of Germany. 

tively a point,  line or plane. In the case of  a rotoinver- 
sion, the geometric element consists of  the axis of  the 
rotation part  and the center of the inversion part.  As 
a general concept,  the geometric element may be 
justified by a mathemat ical  definition (as given in the 
Appendix) .  A "symmetry element" (of a given crystal 
structure or object) is defined as a concept with a 
double meaning,  namely the combination of a 
geometric element with the set of symmetry operations 
having this geometric element in common ('element 
set'). There is no overlap between element sets of  a 
given structure. Together with the identity and the 
translations,  for which a geometric element is not 
defined, the element sets cover all symmetry  
operations.  

0108-7673/89/070494-06503.00 © 1989 International Union of Crystallography 
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Introduction 

The Ad-hoc Commit tee  was set up in 1980 to 'consider  
nomencla ture  problems concerning symmetry  
operat ions and symmetry  elements in space groups ' .  
With regard to symmetry  operat ions,  the only prob- 
lem is that  of  the appropr ia te  symbols;  however,  a 
complete notat ion has been adopted  in International 
Tables for Crystallography (1983) (referred to 
hereafter  as ITA83) .  

The term "symmetry element' is widely used only 
by crystal lographers ,  mineralogists  and spectrosco- 
pists. It is the collective designation for a number  of  
concepts which - judging from their names - appea r  
to be of  a geometric  nature:  a rotation axis, a mirror  
plane etc. An essential feature of  symmetry  elements 
is the connect ion between such geometric items and 
one or more symmetry  operat ions of  a given space 
group or point  group. This connection has consisted 
in the past  of  a t radi t ional  set of  ad-hoc assignments 
of  geometric  items to symmetry  operations.  It has 
been the foremost  goal of  our Ad-hoc Commit tee  to 
put that set on the footing of  a precise and unified 
general definition. 

In the successive editions of  the International 
Tables for Crystallography, only ITA83 and later edi- 
tions contain an explicit description of  symmetry  
elements; see its Table 1.3. The last column of that 
table is headed:  'Genera t ing  symmetry operat ion with 
glide or screw vector' .  The term 'generat ing '  is not 
explained;  it is taken to mean that if a structure has 
a symmetry  operat ion listed here, then the corre- 
sponding ' symmetry  element '  listed in the second 
column, with its symbol as in the first, is present.  
However,  that  interpretat ion leads to several 
problems: 

(1) The table reflects the usual ad-hoc assignment;  
again there is no clue to a unified definition. 

(2) The geometric  item is obvious for a (glide-) 
reflection, a (screw-) rotat ion and an inversion. For 
a rotoinversion,  however,  the term ' rotoinversion axis '  
in column 2 is unclear.  It suggests a mere line, but 
that  is not sufficient to determine the operat ion.  

(3) According to this table, a plane such as xyO in 
space group Cmma (67), for instance, is both an a- 
and a b-glide plane. The current symbol 'a' is awk- 
wardly biased. More serious is the resulting apparen t  
ambiguity of  the concept  'glide plane' .  

(4) In Cmmm (65), two possible 'generat ing '  sym- 
metry operat ions  share a plane. One is the reflection 
( x , y , - z ) ,  the other  is an n-glide reflection ( l + x ,  
½ + y , - z ) .  The table identifies the plane xyO as a 
mirror  plane as well as an n-glide plane, and the 
current symbol 'm '  may  hence seem inappropr ia te .  
Again the quest ion arises: what  is 'a glide p lane '?  
And what  if it can also be a mirror  plane? 

(5) There are also glide planes for which there is 
no conventional  symbol in ITA83.  Cor responding  

Table 1. Geometric elements of  symmetry operations 
in point groups and space groups 

Symmetry Geometric Additional 
operation element parameters 

Identity Not required None 
Translation Not required Vector t 
Reflection in plane A Plane A None 
Glide reflection = reflection in Plane A Glide vector v 

plane A and translation v 
parallel to A 

Rotation about line b Line b Angle and sense of 
rotation 

Screw rotation = rotation about Line b Angle and sense of 
line b and translation u rotation, screw 
parallel to b vector u 

Rotoinversion = rotation about Line b and Angle (not equal to ~r) 
line b and inversion through point P on b and sense of rotation 
point P on b 

Inversion through point P Point P None 

glide reflections are labelled 'g '  in ITA83.  They occur,  
for example,  in space groups P4bm (100), 
P4/nbm (125), P42/nnm (134), R3m (160) and 
Fm3m (225). 

Problem 1, in par t icular  the uncertain meaning  of  
'a glide plane ' ,  formed a major  difficulty for the 
Ad-hoc Commit tee  when it a t tempted to design an 
improved nomencla ture  for symmetry elements.  We 
therefore under took  the format ion of  an unam-  
biguous definition of  ' symmetry  element ' .  Since this 
term is sometimes confused with 'g roup element ' ,  
adopt ion of  a new name without the word 'e lement '  
was contemplated.  The original term was nevertheless 
finally retained since it is so firmly rooted in the 
crystal lographic literature. 

The Ad-hoc Commit tee ,  however,  has in t roduced 
the auxil iary new concepts 'geometric  element '  and 
'e lement  set', in the expectat ion that they will allow 
use of  the term ' symmetry  element '  in the sense pre- 
cisely specified below, which does not seriously con- 
flict with the previous use of  the term. In § 5 we 
re-examine the above problems 2 to 5 in the light of  
the new definition. 

1. Geometric elements 

Each symmetry  operat ion of  a point  group or space 
group belongs to one of  the eight categories in Table 
1, column 1. In order  to describe these operat ions,  a 
geometric element (Table 1, column 2) may be as- 
signed to each but  the first two. The geometric  element 
is defined as a geometric  item that allows the reduced* 
symmetry operat ion in space to be located and orien- 
ted. It does not contain numerical  parameters  such 
as a rotat ion angle or the components  of  the glide 
vector of  glide reflections (last column).  It may,  
however,  be defined much less ambiguously  so as to 

* The reduced operation is derived from a given operation by 
removing any intrinsic screw or glide translation. Hence, if the 
latter is zero, reduction does not change the operation. 
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Table 2. Symmetry elements in point groups and space 
groups 

N a m e  o f  
s y m m e t r y  
e l e m e n t  

Mirror plane 

Glide plane 

Rotation axis 

Screw axis 

G e o m e t r i c  Def in ing  O p e r a t i o n s  in  
S y m b o l  e l e m e n t  o p e r a t i o n  (d.o.)  e l e m e n t  s e t  

Em Plane A Reflection in A D.o. and ~ts 
coplanar 
equivalents* 

Eg Plane A Glide reflection in D.o. and its 
A, 2u (not u) a coplanar 
lattice translation equivalents* 

En Line b Rotation about b, 1st . . .  (n - 1)th 
angle 2zr/n, n = powers of 
2, 3, 4 or 6 d.o., and their 

coaxial 
equivalents't 

Enj Line b Screw rotation about l s t . . . , ( n - l ) t h  
b, angle 27r/n, u = powers of 
j /n  times shortest d.o., and their 
lattice translation coaxial 
along b, right- equivalentst 
hand screw; n = 
2 ,3 ,4  or 6, j =  
1 . . . . .  ( n - I )  

Rotoinversion Eft Line b and Rotoinversion: D.o. and its 
axis point P rotation about b, inverse 

on b angle 2rr/n, and 
inversion through 
P; n = 3 , 4  or 6 

Center E1 Point P Inversion through P D.o. only 

* That is, all glide reflections with the same reflection plane, with glide 
vectors differing from that of d.o. (taken to be zero for a reflection) by a 
lattice translation vector. 

t That is, all rotations and screw rotations with the same axis b, the same 
angle and sense of rotation, and the same screw vector u (zero for a rotation) 
up to a lattice translation vector. 

yield almost exactly the entries in the second column, 
cf. Appendix. 

2. Symmetry elements 

Two or more different symmetry operations of the 
same space group or crystal structure may have iden- 
tical geometric elements, even when they belong to 
different categories as specified by Table 1. An 
example is provided by the powers of a rotation (same 
category) or by a reflection and a glide reflection in 
the same plane (different categories). In a given space 
group, the complete set of symmetry operations which 
have the same point or line etc. as their common 
geometric element will be called the element set of 
that geometric element. 

The combination of  a geometric element and its ele- 
ment set is indicated by the term 'symmetry element' 
(Table 2). This allows such statements as 'This point 
lies on a rotation axis', and also 'The operations 
belonging to a glide plane' to be made. 

The first column of Table 2 lists the name of the 
symmetry element. Of the four different kinds of 
geometric elements (Table 1), 'point '  and "point plus 
line' each yield one type of symmetry element. Two 
types arise from both 'plane'  and 'line', depending 
on the presence or absence of a pure reflection and 
a pure rotation in the element set (cf. § 5). The symbols 

in the second column all begin with E, thereby indicat- 
ing symmetry elements as defined in this Report. 

The fourth column, 'defining operation',  states 
what to look for in order to identify a symmetry 
element, for instance in a structure model. The 
defining operation alone (for which the simplest is 
selected when there is a choice) suffices. However, 
for a rotoinversion axis E3 or E6, it will be easier to 
verify the presence of both its square and its cube, 
cf § 3. The last column explicitly describes the full 
element set. 

3. Partial symmetry elements 

Element sets of fourfold and sixfold rotation and 
screw rotation axes have subsets which fully satisfy 
the specifications in Table 2, last column. However, 
they do not contain all symmetry operations with the 
given axis as geometric element. In order to distin- 
guish such incomplete symmetry elements from the 
regular ones, it is recommended that they be referred 
to as 'partial symmetry elements'; they will be desig- 
nated by EP instead of E. Examples: EP2 in E4; 
EP2~ and EP3 in E63; EP2 and EP32 in E62. 

The partial elements should not be confused with 
the regular symmetry elements defined by the powers 
o fa  rotoinversion: the square and cube of 6 t (defining 
an E3 and an Era) and of ~t (defining an E3 and an 
E l ) ,  and the square ~2 which defines an E2. The 
symmetry elements so defined are regular and by no 
means partial, provided that the corresponding ele- 
ment set is not a subset of any other element set (as 
happens for ~2 in the second example below). 

4. Some examples 

According to the above definition, each symmetry 
operation belongs to one and only one symmetry 
element (not counting partial elements). The latter is 
determined by the geometric element of the operation. 
For example, we can 'decompose'  any site symmetry 
group into symmetry elements. 

Example 1. A site symmetry with point group 
consists of: 

~t and ~5, forming a rotoinversion axis E6 
~2 and ~4, belonging to a rotation axis E3 
~)3, belonging to a mirror plane Era. 

This 'decomposition'  is always exhaustive (the 
identity operation is not listed in these examples since 
it occurs in every point group). Strictly speaking, it 
is not a true decomposition, because the mirror plane 
for instance has in its element set not only the reflec- 
tion but also the infinite number of coplanar 
equivalents which are of course not part of the site 
symmetry. 
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Example 2. Site symmetry 4 /m consists of: 
41, 42 and 43, belonging to a rotation axis 

E4 
~1 and ~3, forming a rotoinversion axis 

E4 
m ~, belonging to a mirror plane 

Em 
~1, forming a center E l .  

Example 3. Site symmetry 2 /m 3 consists of: 
4x  (31 and 32), belonging to four rotation 

axes E3 
4x  (31 and 35), forming four rotoinversion 

axes E3 
3 x 21, belonging to three rotation 

axes E2 
3 x m 1, belonging to three mirror 

planes Em 
~1, forming a center E l .  

5. Comparison with ITA83 

The essential feature of the definition of symmetry 
elements in Table 1.3 of ITA83 is that they are defined 
by a 'generating symmetry operation'. In math- 
ematics, an operation 'generates' a certain group 
which is clearly not meant here. Hence, 'generating' 
is taken as having the sense of 'characteristic for'. 
Thus, Table 1.3 leads to the ambiguous or uncertain 
problems 2 to 5 of the Introduction. 

By contrast, the concept 'symmetry element' in the 
present proposal depends primarily not on a single 
operation but on a geometric element (GE). Given 
that GE, it is the element set (consisting of the 
operations sharing that GE) that determines the 
nature of (and, eventually, the symbol for) the sym- 
metry element. There is always just one such set, so 
that no ambiguity can exist and it is only the symbol 
which may be open to discussion. 

Since the difficulties with the ITA83 description 
occur mainly with glide planes, these are now re- 
examined. In Fig. l ( a )  we may imagine that, for a 
given crystal structure, P ~ Q represents a symmetry 
reflection through the plane A. 

It may be recalled that there also exists an infinite 
number of glide reflections (all of them symmetry 
operations) with respect to the same plane: P ~ R, S 
etc. (These are the coplanar equivalents of the 
operation P-~ Q mentioned in Table 2.) All these 
operations have the plane A as their common GE; 
together with the reflection they form the element set. 
In the present definition, the symmetry element in 
this case is always a mirror plane. In particular, 
problem 4 of the Introduction falls in this category. 
The new definition does not allow the xyO plane in 
space group Cmmm to be called 'a mirror and also 

an n-glide plane'. The fact that one of the coplanar 
equivalents happens to have the shift (a + b)/2,  which 
is a lattice translation, does not change the nature 
(mirror plane) of the symmetry element. 

The other alternative occurs if a glide reflection 
P ~ R  is given through plane A, and none of its 
coplanar equivalents [discussed in note (iv) to Table 
1.3 in ITA83] is a reflection (Fig. l b). Then, plane 
A is always a glide plane. The present Report recog- 
nizes only geometrically distinct symmetry elements. 
Hence, in the case of problem 3 of the Introduction, 
an interpretation such as 'both an a- and a b-glide 
plane' should no longer be possible: here the plane 
xyO is just one single glide plane, whatever symbol 
is assigned to it. It is recommended that the symbols 
used express this primary differentiation between mir- 
ror and glide planes. This can be done simply by 
reserving 'm '  exclusively for mirror planes, as was 
done by calling them Era. Any differentiation between 
various kinds of glide planes falls beyond the scope 
of the present Report. 

The 'special'  glide planes of problem 5 in the 
Introduction need no further discussion beyond the 
statement that they are true glide planes, without 
special distinction in the sense of this Report. 

A very similar situation exists for twofold axes. If, 
for a given twofold axis, a 180 ° screw rotation P-~ R 
is a symmetry operation, then combination with all 
symmetry translations parallel to the axis generates 
the element set consisting of infinitely many 
operations. If, among these, there is a rotation of 180 ° 
such as P ~  Q in Fig. l ( a )  (where A now represents 
the axis), then the symmetry element is a twofold 
rotation axis E2. If there is no such operation among 
them (Fig. lb) ,  then the symmetry element is a two- 
fold screw axis E21. An axis cannot be both simul- 
taneously, as a strict application of Table 1.3 in ITA83 
would require for twofold axes parallel to (110) in 
structures with cF lattices; such axes can only be 
rotation axes. 

Problem 2 of the Introduction has been solved in 
this Report by taking the conventional 'line-plus- 
point' GE for a rotoinversion. 

P 

A 

(a) 

P 

R 

(b) 

A 

Fig. 1. (a) Array related by the mirror plane A. (b) Array related 
by the glide plane A. 
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APPENDIX 
General definition of geometric elements 

A1. Introduction 

The assignment in Table 1 of geometric elements 
to symmetry operations has been performed in such 
a way that symmetry elements are in accordance with 
crystallographic tradition. The difference from that 
tradition is, firstly, that the two-sided character of 
symmetry elements has been made explicit and unam- 
biguous through the introduction of geometric ele- 
ments and element sets. The second difference, in the 
present definition, is that the geometric item is defined 
primarily for each single operation whereas existing 
definitions of 'symmetry element' tend to be associ- 
ated with a (cyclic?) group of operations. For in- 
stance: 'The geometrical locus about which a group of 
repeating operations act is called a symmetry element' 
(Buerger, 1963); or 'It is imperative to distinguish 
between symmetry operations (group elements) 
and symmetry elements (cyclic groups)' (Donnay & 
Donnay, 1972). 

The Ad-hoc Committee had previously discussed 
proposals to establish such a group assignment, but 
had found them awkward when applied to space 
groups in which non-cyclic site symmetries occur. 
Existing definitions, such as the two just cited, do not 
specify exactly which group belongs to a given 
geometric item. Therefore, it was decided to drop the 
group association and first define the 'geometric ele- 
ment' for each given operation. 

The obvious aim of such a definition is to pro- 
vide a 'space anchor'  for the orientation and the 
location of the operation. With that aim in view, 
there is actually little choice. For point-group 
operations only the orientation is needed, whereupon 
the real eigenvector(s) of the operation yield the 
geometric elements of Table 1 almost uniquely (not 
quite uniquely: the eigenvector with negative eigen- 
value of the reflection, for instance, can be omitted 
but that of a rotoinversion cannot). Extension to 
space-group elements, fixing their location as well, is 
also easy but not entirely automatic. 

The question hence arises whether a general 
definition can be given for space groups as well. The 
purpose of this Appendix is to review some of the 
past attempts in that direction, and to present a new 
interpretation (§ A3). The latter produces Table 1 
directly. 

A2. Previous efforts 

In the past, a symmetry element has sometimes 
been described as a line, plane or point which is 
invariant for (that is, not displaced by) a symmetry 
operation. Stated in that form, such a description is 
useless. For example, a reflection leaves not only the 
mirror plane in place, but also all planes perpen- 

dicular to it, which are clearly not wanted. Hence the 
line etc. must not only be invariant as a whole, but 
every point on it must remain in place. A definition 
of the geometric element for a given symmetry 
operation may thus be 'the subspace consisting of 
invariant points' ( 'SCIP').  An obvious difficulty then 
arises in dealing with operations such as screw rota- 
tions and glide reflections, for which no point what- 
ever is invariant. The solution for this problem is to 
remove from the given operation its 'intrinsic transla- 
tion', the latter being parallel to an invariant direction 
of the operation. The reduced operation thereby 
results, with a fully determined position for the reflec- 
tion plane, or the axis of rotation, which now becomes 
the geometric element. 

This term also applies to operations that have zero 
intrinsic translation: a (roto-) inversion or a pure 
reflection or rotation. For these, the given operation 
is identical to its reduced operation. The other 
extreme occurs when the given operation is a mere 
translation. In that case the reduced operation is just 
the identity. The geometric element of any given 
operation is hence defined as 'the subspace consisting 
of all invariant points for the reduced operation'  
('SCI PRO'). 

The SCIPRO definition of geometric elements 
apparently yields the results given in Table 1, but a 
severe discrepancy remains for the category of roto- 
inversions for which it yields just one point. In Table 
1, the traditional axis line has been added because 
otherwise the rotoinversion would not be oriented. 
In all other categories, the reduced operation is com- 
pletely located as well as oriented by the geometric 
element as defined by SCIPRO. However, the fact 
that SCIPRO fails for rotoinversions shows that the 
' invariant-points'  reasoning, which led to the 
SCIPRO definition, is basically inadequate. 

A3. A new interpretation 

A new interpretation of the geometric element 
assigned to a given symmetry operation W by Table 
1 follows: 

Consider the Euclidean normalizer* of W, that is, 
the group of all congruence operations which 'com- 
mute with W'; in other words, which transform W 
into itself. The ten different types of normalizer for 
all possible operations W are listed in Table 3 (two 
types each for rotations and screw rotations as shcwn 
in the footnote to Table 3, and one type for each of 
the remaining six kinds of operation). All groups are 
noncrystallographic and continuous. In the case of a 

* The term 'Euclidean normalizer' is generally used in relation 
to subgroups of the group E of all congruences ('Euclidean map- 
pings'), cf. International Tables for Crystallography (1987). In the 
sense used here (relating not to a subgroup but to a single group 
element W), the normalizer is also called the centralizer of W, cf. 
Ledermann (1973). 
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Table  3. Euclidean normalizers o f  symmetry operations 
and their invariant subspaces 

Euclidean normalizer Invariant 
Symmetry N of W subspace(s) 

operation W consists of of N 
Identity All congruences None 
Translation, Those congruences which None 

vector t conserve vector t 
Reflection in Those congruences which Plane A 

plane A conserve plane A 
Glide reflection Those congruences which Plane A 

in plane A, conserve plane A and 
glide vector v vector v 

Rotation about Those congruences which Line b 
line b conserve line b* 

Screw rotation Those congruences which Line b 
about line b, conserve line b and 
screw vector u vector u* 

Rotoinversion Those congruences which Line b, point P, 
with respect to conserve line b and and plane 
line b and point P point P, as well as the perpendicular to 

sense of rotation b through P 
Inversion Those congruences which Point P 

conserve point P 

* If the rotation angle is not 180 °, then the sense of rotation must also be 
conserved. The normalizer then lacks mirror planes through b, for instance. 
However this does not change its invariant subspaces. 

ref lect ion in a p lane ,  for example ,  the  no rma l i ze r  
conta ins  all para l le l  t rans la t ions ,  ref lect ions in all 
p e r p e n d i c u l a r  p lanes ,  etc. The short  and  ra ther  
obvious  desc r ip t ion  in the  s e c o n d  c o l u m n  o f  Table  3 
is, however ,  sufficient to y ie ld  the  invar ian t  subspaces  
l is ted in the  th i rd  co lumn.  This lat ter  c o l u m n  is in 
a c c o r d a n c e  wi th  the s e c o n d  c o l u m n  of  Table  1. The  
ensu ing  def in i t ion  hence  becomes :  the geometric ele- 
ment of  a symmetry operation W consists o f  the sub- 
space(s) invariant for  all operations belonging to the 
Euclidean normalizer o f  W. 

The fo l lowing  r emarks  app ly  to Table  3: 
(i) The  occu r r ence  o f  th ree  i tems for  the  roto-  

invers ion  ( ins tead  o f  two  in Table  1) is no t  a dis- 
c repancy:  if  the  po in t  is invar iant ,  i nva r i ance  o f  the  
line fo l lows f rom that  o f  the  p lane ,  and  vice versa. 
Hence ,  one  o f  the  la t ter  two is r e d u n d a n t .  

(ii) ' Subspace '  s h o u l d  be t aken  in the  p r o p e r  sense,  
because  in the  i m p r o p e r  sense ( 'all space ' )  it is 
invar ian t  for  any  cong ruence .  It w o u l d  have  to be 
a d d e d  to all g e o m e t r i c  e l emen t s  but  w o u l d  no t  
increase  the i r  i n f o r m a t i o n  content .  

(iii) The  invar i ance  n e e d  only  ob ta in  for  the  sub- 
space as a whole ,  no t  necessar i ly  po in twi se  as 
r equ i red  in the  S C I P R O  def ini t ion.  

(iv) It s h o u l d  be n o t e d  that  the  c o n g r u e n c e  
ope ra t ions  re fer red  to above  are ope ra t ions  in po in t  
space (see ITA83 ,  § 8.1.5), no t  vector  space.  The  g iven  
def in i t ion  o f  geome t r i c  e l emen t s  h e n c e  appl ies  to 
symmet ry  ope ra t i ons  in po in t  space  only,  no t  to those  
in vector  space.  
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The Kathleen Lonsdale Lecture 

The 1989 Kathleen Lonsdale lecturer is Dr Robert 
Diamond, who will deliver the lecture on 12 September 

1989 at the Annual Meeting of the British Association for 
the Advancement of Science, which will be held in Sheffield, 
England, 11-15 September 1989. The title of the lecture 
will be 'Crystalline Viruses'. 
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D i s l o c a t i o n s  in sol ids.  Edi t ed  by F. R. N. NABARRO. 
Pp x i + 4 3 4 .  A m s t e r d a m :  Elsevier  Sc ience  Pub- 
lishers,  1987. Price Dfl 235.00 or US $94.00. 

The successive volumes of the Nabarro-edited series Dislo- 
cations in solids have over the years been keenly awaited 

by a large interdisciplinary community of scientists 
throughout the world. Volume 7, the latest, consists of five 
chapters (33-37) on different phenomena involving disloca- 
tions which have been known for decades but on which 
new light has in recent years been thrown, thanks to new 
experimental techniques. The chapters range from relatively 
short, 42 pages, to those three times as long, 122 pages. 
They cover phenomena ranging from those - like electrical 


