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Abstract 

New or redefined printed symbols are proposed in 
the light of the recently accepted redefinition of sym- 

* Appointed 14 November 1984, modified 10 August 1987 [see 
Acta Cryst. (1986), A42, 64 for original membership] under ground 
rules outlined in Acta Cryst. (1979), A35, 1072. Final Report 
accepted 23 December 1991 by the IUCr Commission on Crystallo- 
graphic Nomenclature and 9 March 1992 by the Executive Com- 
mittee. 

met ry  e lements  [de Wolff  et al. (1989). Acta Cryst. 
A45, 494-499] .  In par t i cu la r ,  the  let ter  e covers  cer ta in  
glide p lanes  which  h i the r to  had  no  u n i q u e  symbol ,  
such as those  ca l led  ' e i ther  a or  b' .  The  use o f  e in 
the  H e r m a n n - M a u g u i n  symbol  o f  five dif ferent  space  
g roups  is r e c o m m e n d e d .  For  e p lanes  p ro j ec t ed  in a 
d i rec t ion  para l le l  to the  p lane ,  a g raph ica l  symbol  is 
p r o p o s e d  wh ich  removes  the  ambigu i ty  o f  the i r  pres- 
ent  des igna t ion .  The  let ter  k is p r o p o s e d  for  a newly  
def ined class o f  gl ide p lanes  which  unt i l  n o w  were 
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without specific symbol. The symbols for symmetry 
operations introduced in the space-group descrip- 
tions of International Tables for Crystallography 
(1989), Vol. A (Dordrecht: Kluwer Academic Pub- 
lishers) are recommended for general use, with 
modifications only for glide reflection operations. 

Introduction 

The Ad-hoc Committee appointed in 1980 to consider 
'nomenclature problems concerning symmetry oper- 
ations and symmetry elements in space groups' has 
issued two Reports entitled Nomenclature for Crystal 
Families, Bravais-Lattice Types and Arithmetic Classes 
(de Wolff et al., 1985) and Definition of Symmetry 
Elements in Space Groups and Point Groups (de Wolff 
et al., 1989). As noted in the 1989 Report, the only 
outstanding problem concerning symmetry oper- 
ations is that of choosing appropriate symbols, since 
the concept is clear. A provisional notation has been 
adopted in International Tables for Crystallography 
(1983, 1989), referred to hereafter as ITA83. 

1. Printed symbols for symmetry elements 

The definition of symmetry elements as given in the 
1989 Report (de Wolff et al.) will be used throughout 
the present Report. Here we repeat the essence: 

For any given symmetry operation its geometric 
element (plane, point and/or  line) is defined. A sym- 
metry element is the combination of the geometric 
element of one of the symmetry operations in a given 
space group with the set (called 'element set') of all 
symmetry operations in that space group which share 
this geometric element. 

Explicit definitions of geometric elements and 
descriptions of the ensuing symmetry elements as well 
as their symbols are given in Tables 1 and 2. (These 
are identical to Tables 1 and 2 in the 1989 Report 
except for glide planes and are repeated here for 
completeness, see below). Each symmetry element is 
represented by a symbol consisting of two characters. 
The first character is an upper-case E for all symmetry 
elements. It serves to show that the symbol refers to 
a symmetry element and not, for instance, to a sym- 
metry operation. If this is clear already from the 
context, then the E may be omitted, e.g. 'an axis 2' 
instead of 'an axis E2'. 

The symbol Eg listed in the 1989 Report can be 
used for glide planes if one merely wants to show that 
the symmetry element is a glide plane. On the other 
hand, if it belongs to one of the special kinds which 
have long been denoted by an appropriate letter 
(a, b, c, n or d; cf. ITA  83), then that letter replaces 
g in Eg. 

An important new aspect of symbols like Eb may, 
however, be pointed out. According to ITA83, denot- 
ing a plane by b merely meant that a glide reflection 

Table 1. Geometric elements of symmetry operations 
in point groups and space groups 

S y m m e t r y  
o p e r a t i o n  

Identity 
Translation 
Reflection in plane A 
Glide reflection = reflection 

in plane A and translation 
v parallel to A 

Rotation about line b 

Screw rotation = rotation 
about line b and 
translation u parallel  to b 

Rotoinversion = rotation 
about line b and inversion 
through point P on b 

Inversion through point P 

G e o m e t r i c  A d d i t i o n a l  
element p a r a m e t e r s  

Not required None 
Not required Vector t 
Plane A None 
PianeA Glide vector v 

Line b Angle and sense of  
rotation 

Line b Angle and sense of  
rotation screw 
vector u 

Line b and point Angle (not equal to 7r) 
P on b and sense of  rotation 

Point P None 

in the plane with a glide component b/2 along the b 
axis is a symmetry operation. This definition certainly 
applies to the situation depicted in Fig. 1. 

Fig. 1 is adapted, as are Figs. 2 and 3, from a set 
of similar figures designed by Ad-hoc Committee 
member W. Fischer as an inventory of all types of 
glide plane. Although the set was presented to the 
Committee in 1980, long before the 1989 Report came 
out, each of its figures shows precisely the 'element 
set' of the glide plane as defined in that Report (cf. 
the above summary). For a glide plane, the element 
set consists of all glide reflections having the plane 
as their common geometric element. Their action is 
shown in projection upon this plane. From the starting 
position of any + sign, each - sign results from one 
of the glide reflections of the set. All of these are 
shown within an elementary mesh of the resulting 
two-dimensional periodic pattern of + and - signs. 

We shall often refer to the net N formed by all 
translations parallel to the plane; this net is easily 
visualized by looking at + signs only. These vectors 
are to be distinguished sharply from the vectors con- 
necting a + sign with any - sign, each of which is 
the glide vector of a glide reflection belonging to the 
element set. 

The new aspect arises because, in some cases, by 
the ITA83 definition, the b-glide plane is also an 
a-glide plane; see Fig. 2. Clearly this happens only 
if the net N is orthogonal centred, because then the 
a glide can be changed into a b glide (and vice versa) 
by adding a centring translation. The practice so far 
has been to call such a glide plane arbitrarily either 
a or b, thus causing an unjustified bias and a lack of 
uniqueness in these symbols. Therefore, we propose 
that the case of Fig. 2 be covered by a separate symbol. 

The scope of this symbol should then be extended 
to glide planes in a diagonal orientation, that is, 
parallel to just one crystal axis, provided that the 
glide plane has a glide vector along that axis and that 
the net N is orthogonal centred. For such planes 
there is not the ambiguity of the above a-b random 
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Table 2. Symmetry elements in point groups and space groups 

Name of 
symmetry Geometric Defining Operations in 
element Symbol element operation (d.o.) element set 

Mirror plane Em Plane A Reflection in A D.o. and its coplanar equivalents* 
Glide plane EgO. Plane A Glide reflection in A, 2~, (not v) a D.o. and its coplanar equivalents* 

lattice translation 
Rotation axis En Line b Rotation about b, angle 2~r/n, n = 2, 3, l s t , . . . ,  ( n -  l)th powers of d.o. and 

4 or 6 their coaxial equivalentst 
Screw axis Enj Line b Screw rotation about b, angle 2¢r/n, 1st . . . . .  ( n -  1)th powers of d.o. and 

u =j /n  times shortest lattice their coaxial equivalentst 
translation along b, right-hand screw; 
n=2 ,  3, 4 or 6, j =  1 , . . . ,  ( n -  1) 

Rotoinversion axis E~ Line b and point P Rotoinversion: rotation about b, angle D.o. and its inverse 
on b 2~r/n, and inversion through P; n = 

3, 4 or 6 
Center E1 Point P Inversion through P D.o. only 

* That is, all glide reflections with the same reflection plane, with glide vectors differing from that of the d.o. (taken to be zero for a reflection) by a 
lattice translation vector. 

t That is, all rotations and screw rotations with the same axis b, the same angle and sense of rotation and the same screw vector u (zero for a rotation) 
up to a lattice translation vector. 

¢ In Eg, g is replaced by a, b, c, n, d, e or k for specific kinds of glide planes, cf. § 2. 

choice, but the extended scope of the new symbol is 
in line with that of all existing symbols (namely 
a, b, c, n and d). Each of these is used for a glide 
plane with both one and two crystal axes in the net 
N, cf. Fig. 3. 

The letter e is proposed for the new symbol. Thus, 
Ee will apply to glide planes with orthogonal centred 
nets N and at least one glide vector along a crystal 
axis. A new criterion is hence necessary: namely the 
orientation of glide vectors with respect to the conven- 

000 010 
+ t- 

100 4" - -  4" 

Fig. 1. (After  W. Fischer.)  The  e lement  set o f  an Eb-gl ide plane,  
shown as a set o f  points above  ( + )  and below ( - )  the plane 
p roduced  by glide reflections in the plane,  starting for  instance 
f rom the + sign at uppe r  left. The  net N o f  t ranslat ions parallel  
to the plane ( + .  • • + vectors)  is indicated by a mesh,  which in 
this case happens  to be rectangular .  Both pairs o f  edges are 
parallel  to crystal axes. There  is a glide reflection with its glide 
vector  ( +  . . . .  ) a long the b axis. 

000 010 

loo + -- + 

Fig. 2. (After  W. Fischer.)  The  e lement  set o f  an Ee-gl ide plane. 
Cf. capt ion o f  Fig. 1. Note  that  the net N here  is o r thogonal  
centred.  

tional axes of the crystal. Since the latter are along 
symmetry directions, whereas every glide plane is 
parallel to a mirror plane of the lattice, it is not 
surprising that there is always at least one conven- 
tional crystal axis in N. If there is only one such axis, 
then perpendicular to it there is always another trans- 
lation in N. 

The new symbol e as well as old symbols a, b, c, d, n 
will now be redefined in terms of this new criterion 
and of the Bravais type of net N. This net is mono- 
clinic or orthogonal or tetragonal primitive (mp or 
op or tp) or orthogonal centred (oc). [The Bravais- 
net-type symbbls are those introduced in the Ad-hoc 
Committee's first Report (de Wolff et al., 1985).] Only 
oc-type nets N allow an Ee-glide plane. The symbol 
En is applicable to nets N of the Bravais type mp or 
op, whereas Ed is for oc-type nets N. (As stated in a 
footnote to Table 1.3 in ITA83: 'Glide planes d occur 
only in orthorhombic F space groups, in tetragonal 
I space groups, and in cubic I and F space groups. 
They always occur in pairs with alternating glide 
vectors'.) In contrast to Ea, Eb, Ec and Ee planes, 
however, for En and Ed planes there is no glide 
vector either parallel or perpendicular to a conven- 
tional axis in N. 

The ensuing definitions of the glide planes of the 
above kinds are summarized in lines (i) and (ii) of 
Table 3, and more explicitly in Fig. 3. 

All remaining glide planes were previously without 
specific symbol. They each have a diagonal orienta- 
tion (just one conventional crystal axis in the net N).  
Among the glide reflections in their element set, there 
is none with a glide vector along that axis. However, 
one glide vector is (by symmetry) perpendicular to 
it. A symbol seems desirable, so again a new letter is 
proposed: k. The new symbol Ek is briefly defined 
in line (iii) of Table 3 and is fully illustrated in the 
lower block of Fig. 3. Some examples are given in § 2. 
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mp op tp OC 

(1) 
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.t'. O. " 

+ 

+ 
L 
+ 

R3c (161) 
X . .'~, ,~ 

(8) ~ +  

(3) + + (5) + + 

(9) + 

+ 

P21n (13) 
x.O. : 

(14) '+ 

(4) i+ 

(10) + 

+ 

+ 

+ 

Pbcm (57) 
X, ~ ,  " 

+ 

P4cc (103) 
X. X. $ 

+ 

Pnc2 (30) 
O.y.z" 

+ + 

14tlamd (141) 
X. y .  I I.~l 

@ 

® 

(6) 

(7) 

(12) + 

+ 

- + 

- + 

Cmma (67) 
.1" 1 ' 0  

R3c (161) 
.r+~,..F. : 

+ 

- + 

m 

(11) + 

_ + ( 1 5 )  + 

'+ 
+ - + 

R3m f160) 
.r+V...~. : 

+ 

P42c (112) 
x + ~ .  5.  : 

+ 

- + 

- + 

Pdmm (99) 
. r + ~ ,  .1', = 

® 

(13) + 

+ -- + 

+ - + 

14ram (107) 
x+~. £... 

+ 

+ 

+ 

Fdd2 (43) 
11,'¢. )', : 

1+ 

+ 

+ 

142d (122) 
. r + ~ .  X. " 

@3 

@ 

Fig. 3. (Adapted from W. Fisher's drawings.) All possible aspects of the element sets of glide planes shown as in Fig. 1, but independent 
of axis labels. The diagrams are grouped in columns headed by the Bravais-net-type symbol (top line) of their nets N, cf. Table 3. 
The other criteria of that table are verified by looking first at the double lines showing the directions of crystal axes in the plane. 
One edge (vertical) of the mesh of N shown is always chosen along such an axis. The other edge is horizontal except in (1) and (8). 
For diagrams (1 ) , . . . ,  (5), the glide-plane symbol is the label a, b or c of the vertical axis; for the others it is the encircled letter in 
the outlined block containing the diagram. Note the vertical glide vectors in diagrams (1 ) , . . . ,  (7), the horizontal ones in (6), (7), 
(14), (15) and the absence of either in (8) . . . . .  (13). An example of occurrence is given below each diagram by the space-group 
symbol and the coordinate triplet of the plane. 
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Table 3. Printed symbols for special kinds of  glide 
planes 

The symbol is determined by two criteria. One criterion is the 
Bravais type (mp, op, tp or oc) of the net N formed by the symmetry 
translations parallel to the plane under consideration. This net 
always contains at least one conventional crystal axis.* The other 
criterion refers to the orientation of glide vectors with respect to 
such axes. 

Number of glide vectors parallel or 
perpendicular to crystal axes in net N 
(i) One or two parallel 
(ii) None parallel, none perpendicular 
(iii) None parallel, one perpendicular 

Bravais type of net N 
m, op, tp oc 

Ec( Ea, Eb ) Ee 
En Ed 
Ek 

* As define~i in ITA83, § 9.1; however, for rhombohedral space groups, 
hexagonal axes only are used here. 

In Fig. 3, Fischer's inventory of all types of glide 
plane is shown in an abbreviated - though still com- 
plete - fashion in which more graphical prominence 
has been given to the crystal axes. For each diagram, 
one example of its occurrence in a space group is 
listed. 

In some rhombohedral  space groups, diagonally 
oriented Ec, En and Ek planes occur with mp-type 
nets N which can be described by threefold centring 
of an orthogonal net. A rectangular triple mesh of 
the net N is shown for these types of glide planes in 
Fig. 3, diagrams (2), (9) and (14). In diagram (9), the 
similarity to other n diagrams such as (8) or (10) is 
recognized if in (9) a monoclinic primitive mesh of 
net N is considered with diagonal glide vectors.* 

2. Graphical symbols for symmetry elements 

The existing graphical symbols as defined and used 
in ITA83 are considered to be adequate by the Ad-hoc 
Committee with one exception. The situation is very 
different from that of printed symbols because in 
drawings the projection direction becomes an added 
parameter. In the terms 'perpendicular projection' 
and 'parallel projection' used below, perpendicular  
and parallel refer to the orientation of the projection 
direction with respect to the glide plane. 

For an Ee plane the symbol ~ exists for its 
perpendicular  projection. The existing graphical sym- 
bols for the parallel projection of an Ee-glide plane, 
however, suffer from the same ambiguity as the prin- 
ted symbols. They express the glide vector either 
parallel or perpendicular  to the projection direction, 
but the choice is arbitrary. Therefore, a new symbol 

* The glide-plane symbols c, n and k for the three diagrams (2), 
(9) and (14) of Fig. 3 have of course been assigned according to 
Table 3. One member of the Ad-hoc Committee (Professor Won- 
dratschek) thinks that the symbol n for diagram (9) conflicts with 
traditional notions about n planes. He proposes the assignment of 
a special symbol to diagram (9). This proposal has, however, not 
received adequate support within the Ad-hoc Committee. 

is proposed for the parallel projection of  an Ee glide 
plane, namely 

Examples of  Ee planes. All glide planes para l le l to  
two axes in space groups Fmm2, Fmmm, Fm3, Fm3m 
and Fm3c (Nos. 42, 69, 202, 225 and 226), as well 
as certain planes in the five space groups listed in § 3. 

Diagonally oriented Ee planes occur in space 
groups I4mm, I4cm, I7~2m, I4 /mmm,  I4/mcm, I43m 
and Im3m (Nos. 107, 108, 121,139, 140, 217 and 229). 

In ITA83 all these Ee planes are drawn rather 
arbitrarily as either dotted or dashed lines in their 
parallel projections. Fig. 4 shows the diagram of  space 
group I4cm (No. 108), both as shown in ITA83 and 
with use of  the new symbol. 

Although Ek is a new print symbol, in the diagrams 
of ITA83 all glide planes Ek have been drawn satis- 
factorily with the same conventions as used for 
E a / b / c  glide planes. As in these cases, there is a 
single special glide vector (perpendicular to the crys- 
tal axis in net N, cf. Table 3). When this vector is, 
for instance, parallel to the plane of projection, the 
Ek plane is always drawn as the dashed line pre- 
scribed by the relevant convention. Therefore, no new 
graphical symbol is proposed for Ek glide planes. 

. .  . . . . . . .  , . . . . . . .  # :  . . . . . .  , . . . . . . .  . .  

:". I / X :  I ..'" ~ 
:. "'.. , / i ~ l  .." : .."-- -"t:" -+ - - . t - - - - -  

""" " 
', ..... ..... ', 

\ , . . . . .  ~ / - !  
i t .."" ! "".. i i 

(a) 

?_- i_/_ i Z  i,_"_' :: 
i \ l  / i , ,  I / :  

(b) 

Fig. 4. (a) Diagram of space group I4cm (No. 108) taken from 
ITA83. (b) Same, modified by using the graphical symbol pro- 
posed in § 2, for the parallel projection of an Ee plane. 
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Examples o f  Ek planes. Such planes are readily 
found in the diagrams of ITA83 as planes parallel to 
just one axis and projected as dashed lines, e.g. xxz 
in P4bm and PT~21m (Nos. 100 and 113). In par- 
ticular, Table 3 is exactly in conformity with the 
distinction shown between Ek and En planes. See, 
for instance, the dashed and dot-dashed lines for R3 m 
and R3c (Nos. 160 and 161). 

3. Hermann-Mauguin space-group symbols 

The characters appearing after the lattice letter in the 
Hermann-Mauguin (HM) symbol of a space group 
were originally meant to represent generating opera- 
tions of the group. For instance, b was a b-glide 
reflection in a plane oriented according to its position 
in the HM symbol. 

In practice, the popular though ill-defined sym- 
metry elements took over from the operations. Thus, 
b came to be seen as a glide plane, Eb in our present 
terminology. There is no harm in that re-interpreta- 
tion except when the operation belongs to an Ee-glide 
plane. If this holds, for instance, for the above b-glide 
reflection, then there is an Ee but no Eb-glide plane 
in the corresponding orientation. In this case, b 
becomes a very misleading character. Apart from this, 
the bias (given to b over a or c) is just as disturbing 
as in the case of the symmetry-element symbols 
treated in § 1. 

Therefore, it is proposed to replace such misleading 
letters a or b by e in all five HM symbols in which 
they occur: 

Space group No. 39 41 64 67 68 

Symbol in ITA83: A b m 2  Aba2 Cmca Cmma Ccca 
New symbol: Aem2 Aea2  Cmce Cmme Ccce. 

A further advantage of the proposed new symbols is 
that e - unlike a or b - is neutral and is therefore 
not changed upon axis permutation. 

4. Printed symbols for symmetry operations 

A complete set of print symbols was designed by 
W. Fischer & E. Koch (ITA83, § 11.2) and was exten- 
sively applied in the Symmetry Operations sections 
of the space-group descriptions. 

In short, each symbol consists of up to three parts. 
The first part is a single character (sometimes with 

an index) which describes the kind of operation. The 
following part(s) give(s) the components of any rel- 
evant shift or translation vector - always in paren- 
theses - and the coordinates of the operation's 
geometric element, in that order. 

The Ad-hoc Committee, after considering this sys- 
tem, wishes to introduce two modifications for glide 
reflections: 

(i) instead of the present first character (which may 
be a, b, c, n, d or g), always write the letter g; 

(ii) always write the glide-vector components (in 
parentheses) in full, in particular for the simple glide 
reflections in a-, b- or c-glide planes where they were 
previously omitted. 

Rule (i) suppresses information about the kind of 
glide plane to which the operation belongs. Very often 
that information is irrelevant or even confusing. For 
a / b / c  planes the suppression can destroy essential 
information, but the loss is restored by rule (ii) as 
shown in the example below. 

By adopting these changes, the uniformity of sym- 
bols - also with respect to those for rotations - is 
greatly improved. For instance, the symbol of the 
glide reflection in the plane x = ~, with the unusual 
glide vector (0, ½, -1) ,  namely g ( 0 , ½ , - 1 ) l y z ,  now 
falls in line with that for a simple b-glide reflection. 
In ITA83 the latter was denoted by b ~ y z, but this 
is changed by rule (ii) into g(0, ½, 0) i  y z. 

The above rules apply equally to glide reflections 
belonging to the element set of a mirror plane. Thus, 
if the shift component of such an operation is (0, 1, 2), 
then its symbol begins with g(0, 1,2), not with 
m(0, 1, 2). 
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