08-Inorganic and Mineralogical Crystallography

PS-08.04.40 TEMPERATURE DEPENDENCE OF THERMAL VIBRATION AND POSITIONAL PARAMETERS OF ATOMS IN MAGNETITE. By H. Okada*, K. Kidani and T. Masumoto, Department of Earth Sciences, Faculty of Science, Kanazawa University, Japan.

Crystallographic parameters and their thermal changes in natural magnetite (Fe₃O₄) have been studied with single crystal X-ray diffraction method in the range from room temperature to 1069K. The cell dimension (a), oxygen coordinate (u-parameter), and atomic mean-square displacements (MSDs) are reversible as a function of temperature below 773K. The cell dimensions of four specimens are determined within the range from 8.3926(7) to 8.3962(3) Å at room temperature before heating and agree with the previous reports (e.g., Hamilton, W. C., Phys. Rev., 1958 110, 1050-1057; Flett, M. E., Acta Cryst., 1981, 857, 917-920). The cell dimension a with increasing temperature is fitted with the quadratic form:

\[a(\text{Å}) = 8.3845 + 2.3947 \times 10^{-5} T + 9.338 \times 10^{-8} T^2 \]

in the range from 293K to 773K. Discontinuity of the first derivative of expansion at 865K, reported by Cortoni et al. (Trans. Metal. Soc. AIME, 1965, 233, 1519-1520), is not observed in the present magnetite.

The u-parameter remains nearly constant at u = 0.2548(7), but begins to increase at 623K, suggesting random distribution of Fe³⁺ and Fe²⁺ over the octahedral and tetrahedral cation sites. This suggests that the structure would be ideally inverse type below 623K and Fe²⁺ and Fe³⁺ cations would be slightly disordered above the temperature. At the tetrahedral cation site, the MSD's of iron normal to [11] has smaller values than that along [111] at a low temperature. The former, however, has a larger rate of increase with increasing temperature, and becomes larger than the latter above 623K.

PS-08.04.49A PRACTICAL V/P METHOD FOR ESTIMATING SMECTITE LAYERS PERCENTAGE IN MIXED — LAYER ILLITE/SMECTITE AND A STUDY OF FACTORS OF INFLUENCING THE V/P VALUES. By Xi—sheng Lin and Nai—Xuan Zheng, Scientific Research Institute of Petroleum Exploration and Development, Beijing, China.

Smectite layers percentage (%S) has been used to quantitatively describe mixed — layer illite/smectite(1/3S). According to the method (R. C. Reynolds, 1970, 1980), the %S should be identified based upon the positions of 002 and 003 reflections of illite/smectite. However, these two peaks are often overlapped with 001 and 002 reflections of illite respectively. An equation \(\%S = \frac{66 \times V}{P} + 39 \) (shown in Figure) has been derived here, according to the least squares principle, and by using information from E. Perry and J. How at (1970) and our analyzed data. Obviously, it is easier to use the equation to determine the %S, and the error is 10%. The results suggest that both slit size of diffractometer and content of I/S in samples affect the V/P values. Size of divergence slit should be fixed at 1° or \(\frac{1}{2}° \) and the equation be changed to \(\%S = \frac{66 \times V}{P} + \frac{39}{2} \times \frac{1}{2} \).

because of the influence of the contents. %S are:

\[\%S = 1 . \]

888 - 0, 1952lnx, for for \(\%S > 75 \% < 1\) = 1.633 - 0 - 14lnx, for \(50 \% < 75 \% < 1\) = 1.129 - 0.0018x, for \(37 \% < 50 \% \). Here x are referred to the contents. The other factors such as crystalite thickness and lattice distortion, which influence the V/P values, are also discussed in brief.

Crystals of the etrate
08-Inorganic and Mineralogical Crystallography

conference abstracts

(P_3m_2, a = 13.447(2), b = 7.015(1), c = 26.323(2) Å, β= 92.828(8)°, Z = 8, 2292 reflections, 303 variables, R = 0.051, R_w = 0.071) in vacuo loose the boron-coordinated solvent molecule, crystals of the borane.

(C2/c, a = 11.234(2), b = 10.133(1), c = 7.507(1) Å, β = 118.133(9))°, Z = 4, 649 reflections, 64 variables, R = 0.053, R_w = 0.073) are obtained. Vacuum treatment of single crystals with known orientation matrices reveals that reorientation of the molecules occurs and that the solid state reaction is entirely reconstructive.

PS-08.04.13 13C ISOTOPE INFLUENCE ON DIAMOND STRUCTURE. By T. Yamamura, S. Morimoto, and S. Sasaki

1) College of General Education, Osaka University
2) Res. Lab. of Engin. Material, Tokyo Institute of Technology

Diamond with 13C isotope doped has been paid a large attention for the new material with the enormous extension of thermal conductivity. The influences of the isotope ratio on the lattice parameter and structure of diamond were investigated by X-ray diffraction study using four-circle diffractometer and positron synchrotron radiation (2.5GeV 300mA) at Photon Factory, Tsukuba together with Raman specrosocopy. A finely monochromated radiation of λ = 0.697148 ± 0.000028Å was used as an incident beam.

Single-crystals of diamonds composed of various ratios of 12C and 13C isotopes were prepared by high pressure apparatus. The specimens with the size of about 20μm in diameter were used for the diffraction studies. The isotope concentrations in the synthesized diamonds were analyzed by secondary ion mass spectrometry (SIMS).

The isotope dependence on the lattice constant a of diamond is expressed by a(Å) = 3.56712 - 0.00155x + 0.000665x^2, where x = 13C/(12C+13C). The variation of the lattice constant with the isotope ratio, 12C/13C is in the same fashion as those of Heteroatom, 30Ne or 32Sn and 74Ge or 72Ge. All isotopes having a greater atomic weight in each element are characterized by the smaller lattice constant. The present equation is different from a linear function reported by Holloway et al. (1991).

Influence of the nuclear weight on the valence electron density is examined by the refinement of k-parameter in ψ(kr). After extinction and absorption correction, the least-squares refinements converged within less than R=0.01.

In order to elucidate the isotope dependence on anharmonic thermal vibration of atoms, refinements of thermal parameters have been made by 3-dimensional Grnn-Charlier expansion up to 4th order parameters of the trivariate Gaussian probability density function. Anharmonic potentials along with the directions, <110>, <110> in 12C and 13C diamond have been also evaluated.

Raman peak shift of F2g proved that the lattice vibration is varied with the isotope mass difference between 12C and 13C and with the force constant. The shift is not a linear relation with the reduced mass but is represented by a binary equation. This relation is consistent with the lattice constant variation mentioned above. It has been clarified that the lattice vibration gives an effect to the thermal atomic displacement and the thermal conductivity induced from the phonon dispersion.

H. Holloway, K.C. Hass and M.A. Tamer

PS-08.04.14 CRYSTAL STRUCTURE OF SOME CATALYTIC PRECURSORS WITH Pt-Ir COMPLEXES. By E. Garnier* and M. Belé, Cristallographie Minérale, Université de Poitiers, 40 Av. du Rector Pineau, 86022 Poitiers cedex, France.

Multimetallic formulations are currently used to improve the properties of metal catalysts. We grew Pt-Ir complexes by diffusion of Ir(NH3)5Cl2+ in tetraethylxysilane or sodium metasilicate gels. Five precursors have been prepared: (A) Ir(NH3)2Cl2PtCl4, (B) Ir(NH3)3Cl2PtCl6, (C) Ir(NH3)3Cl2PtCl6, (D) Pt(NH3)4IrCl5PtCl2, and (E) Pt(NH3)4IrCl5PtCl2. 2 H2O. These precursors are crystallized in the porosity of aluminas and reduced with H2 to get the bimetallic aggregates. (A) crystallizes with nearly octahedral Ir(NH3)5Cl2+ cations and planar PtCl62- anions. The coordination of these ions is 6/6. The structure of (C) is constituted of Cl2 and PtCl62- anions and Ir(NH3)5Cl2+ cations. It can be regarded as ion layers parallel to (001). successively one PtCl62- layer and two other layers, each of these two layers containing Cl2- and Ir(NH3)5Cl2+. (E) is a layered compound. Each layer, parallel to (001) is stoichiometric. These structures possess an extended hydrogen bonding network involving the ammine and hydrogens and the chlorides.

(A) Ir(NH3)3Cl2PtCl4:
Fm3m
a = 11.656(2) Å,
b = 8.111(1) Å,
c = 9.458(2) Å,
Z = 4, R = 0.082.

(C) Ir(NH3)3Cl2PtCl6Cl2,
C2/m,
a = 11.203(2) Å,
b = 7.894(2) Å,
c = 13.406(2) Å,
β = 99.44(2)°,
Z = 2, R = 0.090.

(E) Pt(NH3)4IrCl5H2O,
I41/a,
a = 15.555(2) Å,
b = 23.554(3) Å,
c = 16, R = 0.040.

*E. Garnier.