20-Industrial Crystallography

phase-pure VoO3. Our efforts here focus specifically on this problem, and subsequently on achieving controlled chemical lithium insertion. Phase-pure VoO3 has also been incorporated into thin-film polymer batteries, which were then cycled to facilitate in situ X-ray diffraction studies (transmission mode) of the corresponding electrochemical lithium insertion process. Structural rearrangements involved in both insertion processes are analyzed carefully and quantitatively; observations are also made regarding the reversibility of these processes.

20.02 – Multiphase Analysis

DS–20.02.01 RECENT DEVELOPMENTS IN THE COMPUTER SEARCH/MATCHING OF MULTI-PHASE MATERIALS. By R. Jenkins, International Centre for Diffraction Data, Swarthmore, PA, U.S.A.

While most contemporary methods of qualitative analysis of multi-phase materials are still based on the classic Search/Match/Identify process developed by Hanawalt, Rinn and Frevel in the 1930s, during the past 10 years or so the personal computer has made a dramatic impact on the ways in which classical procedures are being implemented.

Modern search/matching procedures can conveniently be broken down into three categories: Manual Methods, Computer-Aided Methods, and Fully Automated Methods. Even where purely manual search/match methods are used, the computer-based diffractometer systems still give the potential benefit of high quality 2D data, especially where automated angular and intensity calibration is employed. In the case of computer-aided and fully automated techniques, the additional use of newer data processing techniques including profile fitting, a new stripping, etc., have all combined to provide the diffractionist with accurate, artifact-free data, which can be manipulated to start the search/matching process. Finally, the ability to search index files containing physical measured data, can provide the search/matching software with essential data, which can then be used to select the most likely peaks.

As to the implementation of the search/match approach, the use of fast, modern PCs, with integrated CD-ROM storage and powerful windows-based operating systems, has allowed the software developer a degree of flexibility, undreamed of a decade ago.

This paper will discuss recent progress in the use of some of these new computer-based data collection, processing and analysis programs, with special emphasis on their use in the analysis of multi-phase materials.

DS–20.02.02 Search / Match Using Full Trace Scan: A String Improvement over Using d±t Files

D. Bothe, Siemens AG, Forder, Germany
F. Burglly, Siemens AG, Karlsruhe, Germany
I. Naasnov, Siemens/Scocab, Paris, France

A table of d values in many cases represents, quite adequately, the total powder diffraction pattern of a single phase reference material. However, reducing the diffraction pattern of a complex mixture to such a list is more difficult and more questionable for several reasons:

- Determining "real" peaks through any "peak search" algorithm or "profile fitting" technique becomes practically impossible for weak lines of the measured diffractogram. This, in turn, can preclude the identification of many phases.

- Clusters of lines are most likely to be impossible to deconvolute due to an inherent lack of information on the number, positions, and widths of non-resolved lines.

- The information on line-widths is lost, whereas in fact this is also an attribute of the respective phase.

The DIFFRACT AT search/match uses the full trace scan with subtracted background. Therefore, it takes full advantage of all available information, particularly very weak lines, line clusters and the line widths.

Examples will be considered to demonstrate how important these features are for successful and reliable phase identifications.

Compared to traditional d±t tables, the DIFFRACT AT search/match uses much more output data which could be expected to have a severe penalty in speed of the search/match. In fact, due to very highly optimized code, a search employing the current whole ICDD data base (sets 1-41, 61,993 reference patterns) takes less than 15 seconds when performed on a MAC-Pro-based PC.

DS–20.02.03 QUANTITATIVE POWDER DIFFRACTION PHASE ANALYSIS – RECENT DEVELOPMENT AND CURRENT STATUS. By J. Pala1 and H. Toraya2, 1Central Research Institute SKODA, Czech Republic, 2Czech Research Laboratory, Nagoya Institute of Technology, Japan.

Methods for quantitative phase analysis (QPA) by using X-ray powder diffraction technique are reviewed, and their precision and accuracy are discussed in this paper. A development of experimental design shifted the analysis strategy from few-line measurement to many-lins and even to whole-pattern measurements. Preparation techniques, which can suppress detrimental effects of texture, particle size, inhomogeneity and amorphization, have been developed for powder samples while a serious problem remains for bulk samples. Standard reference materials of known phase composition have been produced. Chemical constraints are used to help with phase abundance analysis. Large scale systematic measurements were undertaken (inter-laboratory tests, reference intensity ratios determinations), and they form a necessary base for a quantitative assessment of the reliability of QPA. The main problem of QPA, which consists in the fact that diffraction intensities are influenced not only by phase composition of the mixture under analysis but also by real structure (and variable crystal structure) of individual components and of poly-crystalline aggregate as a whole, is addressed by simultaneous determination of phase composition, real structure and crystal structure of all constituents. However, correlations existing between the individual parameters enhance uncertainty of their estimates obtained by such a multivariate refinement. Factorial analysis of diffraction patterns of different fractions from the mixture analyzed provides intensity factors which are automatically corrected for the influence of real structure. Some forty years ago, accuracy of the QPA was estimated to (1 - 10)% absolute. The present day rather optimistic estimate, 2% absolute, seems to be limited to favorable cases of powder mixtures of phases, in which the real structure does not affect their diffraction appreciably.

DS–20.02.04 QUANTITATIVE ANALYSIS OF MULTIPHASE MATERIALS USING THE Rietveld METHOD. By Julius Schneider, Institut für Kristallographie, Universität München, Theresienstraße 41, D-8000 München 2, Germany.

Use of the Rietveld method in quantitative analysis of multiphase mixtures has recently found increasing attention. As compared to conventional discrete-peak methods the consideration of the entire
20-Industrial Crystallography

The Two-Stage Method is a very promising strategy especially in cases where preferred orientation may cause difficulties and may lead to wrong results. In the two-stage method, the diffraction diagram is decomposed into its individual peaks and thus its contribution to the different phases. The intensity data are normally used for crystal structure refinement, for example by the program PDLW. This procedure of refinement by PDLW also calculates a scale factor K besides positional and other structural relevant parameters. In case of several phases present each structure refined by itself thus yields its own several scale factors K. The scale factors K are directly related to the amount of material in the sample. By refining two or more crystal structures in the multiphase sample a quantitative analysis can be performed.

Since the whole diffraction pattern enters the analysis and since the crystal structures of the individual components are known, preferred orientation problems are easily recognized and can be taken into account. The biggest advantage of this method is found therefore in samples with considerable preferred orientation, like materials with calcite- or calcite-related-structures or clay and mica minerals.

Besides our own developments efforts and progress has been made in several laboratories, for example by Karimati and co-workers on kaolin samples. A review of recent developments will be presented.