Suitable resolution structures exist of the uncomplexed CaM (Chattopadhyaya, R., et al. 1992. J. Mol. Biol. 288: 1177-92, Ban, C., et al. 1993. PDB:1Las). However, a high resolution structure of CaM complexed with R20, a peptide corresponding to the CaM recognition sequence of smooth muscle/non-muscle myosin light chain kinase, is needed. Also, the structure of E84K-CaM:R20 complex has not yet been determined. We have collected high resolution data, and are determining the structures of both the wild type CaM:R20 complex (1.73 Å) and the E84K-CaM:R20 complex (1.90 Å). Once these structures are determined, we believe they will offer insight into the basis for the coupling of CaM's Ca2+ binding and peptide binding activities. (Supported in part by NIH grants GM30861 and T32-GM08320).

PS04.17.44 DOMAINE INTERACTIONS IN CRYSTALLINS.

G. Wright1, B. Norledge1, H. Driessen1, C. Slingsby1, R. Kroone2, E. Mayr1, S. Triak1, B. Basakl, T. Slingsby1, R. Kroone2, H. Driessen1, W. Sweet2, S. W. Wang*, W. M. Luecke!, J. J. Wang*, H. M. Luecke!.

Biophysics Institute, University of Regensburg, Germany

Molecular Biology, University of Nijmegen, The Netherlands.

*Biophysics Institute, University of Regensburg, Germany

PS04.17.46 SHORT HYDROGEN BONDS IN A PROTEIN RECEPTOR-PHOSPHATE COMPLEX: EVIDENCE FROM STRUCTURES REFINED AT 1 Å RESOLUTION. Zhongmin Wang+, Hartmut Luecke†, and Flavante A. Quiocho*†. Structural and Computational Biology and Molecular Biophysics Program, Howard Hughes Medical Institute and Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030 and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94309

The protein receptor (a phosphate-binding protein or PBP with a mass of 33,000 daltons) serves as an initial and extremely specific component of bacterial active transport. Fully consistent with the stringent specificity of PBP, the initial 1.7 Å structure of the complex shows that the completely dehydrated and sequestered phosphate forms 12 hydrogen bonds (11 with donor groups and 1 with an acceptor group) in addition to one salt link with a guanidinium group. The distance of the hydrogen bond between the donor phosphate O4 oxygen and the acceptor group (an oxygen of carboxylate of Asp 56) is 2.45 Å. This short hydrogen bond has also been observed in the 1.9 Å structure of a fully active mutant PBP in which the donor group Thr141 was replaced by an acceptor Asp residue and in several high resolution structures of other PBP mutants. Moreover, the Asp141 substitution further introduced another short hydrogen bond (2.50 Å) between the phosphate O2 oxygen and an Asp141. In order to cement these findings of short hydrogen bonds, as well as obtain an atomic structure, excellent synchrotron data for the wild-type and the Asp141 mutant PBP were collected to resolutions of 0.98 Å and 1.00 Å, respectively. Using SHELXL-93, full matrix refinement of both structures with hydrogen atoms against the ultra high resolution data confirmed the existence of the short hydrogen bonds. These short hydrogen bonds in the PBP-phosphate complexes could be classified as low barier hydrogen bonds with energies ranging from 12 to 24 kcal/mole. Nevertheless, the Kd values of 1 - 10 μM for the complexes do not reflect these high energy hydrogen bonds. We thank Dr. George M. Sheldrick for providing the program SHELXL and helpful advice.

It is well established by equilibrium binding studies that CD4 interacts with gp120 in the range of nanomolar affinity. Little is known, however, about the mechanism of this interaction. In this report, we analyzed the native and several mutant forms of the HIV-binding fragment (D1D2) of CD4 using a combination of kinetic, structural and thermodynamic approach. Our real-time binding kinetic data from BIAcore measurements showed that the affinity decrease in HIV-binding defective mutants is mainly due to the decrease in association rate. The predominant alteration of association-rate by neutral mutations may inadvertently suggest conformational adaptation in this and many other protein-protein interactions.