PS08.01.25 CRYSTAL STRUCTURES OF Hg₂Mo₅O₁₆, HgVO₃, Hg₂VO₄, AND Hg₉As₄O₁₆. Manfred H. Möller, Annemarie L. Wessels, Wolfgang Jeitschko, Anorganisch-Chemisches Institut, Universität Münster, Wilhelm-KlemmStr. 8, D-48149 Münster, Germany

The title compounds were prepared by reactions of binary and ternary oxides in evacuated silica tubes at temperatures between 400 and 550°C. Their crystal structures were determined and refined from single-crystal X-ray diffractometer data. **Hg₂Mo₅O₁₆**: P2/c, a = 913.9(1) pm, b = 551.3(1) pm, c = 1429.1(2) pm, $\beta = 110.65(1)^\circ$, Z = 2, R = 0.043 (1129 structure factors, 66 variable parameters). **HgVO₃**: P1, a = 359.2(1) pm, b = 475.2(1) pm, c = 858.8(1) pm, $\alpha = 88.32(1)^\circ$, $\beta = 79.60(1)^\circ$, $\gamma = 89.30(1)^\circ$, Z = 2, R = 0.034 (1763 F, 32 v). **Hg₂VO₄**: P2₁/n, a = 367.3(1) pm, b = 1650.3(1) pm, c = 1425.5(1) pm, $\beta = 89.99(1)^\circ$, Z = 8, R = 0.038 (1668 F, 91 v). **Hg₉As₄O₁₆**: R3c, a= 1665.3(1) pm, c = 1083.79(7) pm, Z=6,R=0.037 (1661 F,62v).

 $\rm Hg_2MO_5O_{16}$ and $\rm HgVO_3$ are $\rm Hg(I)$ compounds with $\rm Hg_2$ pairs, $\rm Hg_2VO_4$ is a mixed valent Hg(I, II) compound with Hg_2 pairs and isolated Hg atoms. In Hg_9As_4O_{16} the mercury atoms form almost equilateral Hg_3 groups with the oxidation number +4. The molybdenum atoms have distorted octahedral coordination. These MoO_6 octahedra share corners and edges, thus forming two-dimensionally infinite sheets. The vanadium atoms are irregularly surrounded by five oxygen atoms. These coordination polyhedra share edges, thus forming infinite (VO_3^1-)n chains, which are aligned parallel to each other. The tetrahedral AsO_4 groups are linked only via Hg_3 triangles. Thus, the central atoms of the anions are in their highest oxidation state and the compounds may be represented by the formulas $(\rm Hg_2^{2+})_n(MO_5O_16^{2-})_n, (\rm Hg_2^{2+})_n(VO_3^{1})_{2n}, (\rm Hg_2^{2+} \bullet 2HgO)_n(VO_3^{1-})_{2n}, and (\rm Hg_3^{4+})_3(AsO_4^{3-})_4.$

PS08.01.26 CRYSTAL STRUCTURE OF MIXED-VALENCE α-CoV₃O₈ WITH UNUSUAL METAL DISTRIBUTION. Yoshio Oka¹, Takeshi Yao² and Naoichi Yamamoto¹, Faculty of Integrated Human Studies¹, Faculty of Engineering², Kyoto University, Kyoto 606 Japan

In the CoO-VO₂-V₂O₅ system studied at 600°C only CoV₃O₈ is found as a V(IV,V) mixed-valence compound¹. It was originally formulated as $Co_{1+v}(V_3O_8)_2$ (0.90 $\leq y \leq 1$) with two polymorphs α and β phases; α phase transforms reversibly into β phase at 650 \pm 8°C. It was reported that a phase crystallizes in the body-centered orthorhombic system but the structure has remained unknown. In the present study single crystals of α -CoV₃O₈ were grown in the hydrothermal CoI2-VO(OH)2 system. It crystallizes in the orthorhombic system Ibam with a=14.3298(6)Å, b=9.8906(6)Å, c=8.3950(8)Å and Z=8. The structure was refined to $R/R_w=0.034/$ 0.030 for 1558 reflections with I> $3\sigma(I)$. There are three kinds of metal sites, namely octahedral M (16k) for M=Co, V(1), tetrahedral V(2) (8j) and trigonal-bipyramidal V(3) (8j) where M site is occupied by Co and V atoms evenly. The framework structure is constructed as that zigzag chains of edge-shared MO₆ octahedra running along the c-axis are linked by sharing O(5) atoms along the b-axis forming slabs of MO_6 octahedra parallel to the bc-plane and the slabs are joined by VO₄ tetrahedra and VO₅ trigonal bipyramids. The valence states of metal sites were estimated as Co²⁺ and V⁴⁺ for M and V⁵⁺ for V(2) and V(3). It is noteworthy that the metal distribution over M site is not random but restricted to Co-O(5)-V in neighboring MO₆ through O(5) vertex, which accounts for the even occupancies of Co and V atoms in M site and further ensures the stoichiometric composition CoV₃O₈. The magnetic susceptibility curve exhibits a sharp peak at 8K suggesting the onset of antiferromagnetic order and the value of effective moment is well corresponding to the formula (Co2+0.5V4+0.5)2 V5+208.

1) A. Cassalot and P. Hagenmuller, J. inorg. nucl. Chem., 31, 3049 (1969).

PS08.01.27 STRUCTURE OF HIGH TEMPERATURE PHASES OF THALLOUS NITRATE. P. U. M. Sastry, A. Sequeira, Solid State Physics Division, B.A.R.C., Mumbai 400085, India

TINO3 exhibits structural transitions from orthorhombic phase (III) at R. T. to hexagonal phase (II) ($T_c=79^\circ$ C) and then to cubic phase (I) $(T_c=147^{\circ}C)$. These transitions are believed to be associated with reorientation of planar nitrate ions. The structure of phase III is reported in an earlier single crystal neutron study1. In the present work, the structures of phase II (at 115°C) and phase I (at 170°C) are determined using powder neutron diffraction. Refinements using Rietveld technique indicate that the structures of phase II (Sp.Gr. $P3_1$; a=10.435(1) Å, c=7.451(1) Å, Z=9) and phase I (Sp.Gr. Pm3m, a=4.307(1) Å,Z=1) are similar to those of RbNO3 (IV) and RbNO3(III) respectively. The final R-values (Rp) for phases II and I are 3.8% and 5.1%. In all the three phases, nitrate ions are oriented perpendicular to the three edges of surrounding Tl-cubes with equal proportions in phases II and I. Transformation to phase II from phase III involves an out-of-plane flip of 90° for one of the eight nitrate ions in the cell. While the nitrate ions are ordered in phases III and II, they exhibit a 12-fold orientational disorder in phase I with one of the N-O bonds oriented parallel to an edge of Tl-cube. Refinements rule out the earlier models proposed in literature for phases II and I in which the nitrate ions are oriented normal to the diagonal of Tl-cube.

1. P. U. M. Sastry, H. Rajagopal and A. Sequeira, Acta Cryst., C50, 1854 (1994).

PS08.01.28 THE STRUCTURE OF La₂₆(BO₃)₈O₂₇. E. Schweda, ^a K. Wurst, ^b J.H. Lin, ^c M.Z. Su aInstitut für Anorganische Chemie, Universität Tübingen, Germany ^bInst. für Allg. und Anorg. Chemie, Universität Innsbruck, Austria ^cDept. of Materials Chemistry, Peking University, Beijing 100871, China

Previously La₂₆(BO₃)₈O₂₇ was described as La₃BO₆ with the remark that the samples contain a small amount of unreacted oxide [1]. Very small colourless crystals of La₂₆(BO₃)₈O₂₇ were grown from La₂O₃ and H₃BO₃. La₂₆(BO₃)₈O₂₇ crystallizes in the monoclinic space group P2₁/c with the lattice constants a = 692.0(1) pm, b = 1292.3(1) pm, c = 1457.1(1) pm and β = 99.41(1)°.

A close inspection of this structure reveals a certain relationship to the (CaF₂) fluorite structure, both from the structure and the composition point of view. At a first sight, neglecting the boron atoms in the structure, the composition will be close to "LaO₂" (La₂₆O_{52-x}B₈). Furthermore the structure of La₂₆(BO₃)₈O₂₇ can be considered as a distorted version of the fluorite structure. To emphasize this feature one of the "fluorite" layers with a stacking sequence O-La-O is presented in fig. 1. The sheets are oriented perpendicular to the [101] lattice direction.

Acknowledgments

Financial support for this work was received from Fonds der Chemischen Industrie.

References

1. Gmelin Handbook RE Main Vol.C 11b, p.390

