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PS21.01.09 PREDICTION OF MODELS FOR 
TETRAHEDRAL FRAMEWORKS BASED ON THE 
ENUlVIER!\.TION OF GR!\.PHS. H.-J. Klein. Inst. f. Infom1atik 
u. Prakt. Mathematik. Universi[ii.t Kiel, 24098 Kiel, Gem1any 

For tetrahedral frameworks with comer shaling tetrahedra a 
graph-based method ist presented which allows to generate models 
of frameworks in a systematic way. Under reasonable assumptions 
concerning bond lengths the method is complete insofar as it generates 
all hypothetical models with a given number of non-equivalent 
tetrahedra. 

Tetrahedral frameworks can be desc1ibed by graphs with nodes 
representing tetrahedra and lines representing links between these 
tetrahedra. Because of space group symmeuies, it is possible to 
transfonn the infinite graphs for ideal structures into finite directed 
graphs wit nodes conesponding to central atoms of tetra11edra in a 
fixed asymmet1ic unit and with lines having symmetry operations as 
labels. Tllis kind of non-redundant desc1iption is well suited for 
generating for each space group all graphs representing frameworks 
with a given maximal number of translationally non-equivalent 
tetrahed~·a. Enumeration can be done in a goal-directed way by 
incorporating restriction conditions concerning topological 
properties of structures. Thus, complete enumeration of graphs 
becomes feasible for interesting classes of structures, e.g. zeolites or 
structures where all tetral1edra are topologically equivalent. 

To check whether graphs can be realized geometrically as 
tetral1edral frameworks, nodes are placed into the centre of gravity 
of their immediate neighbours in the graph. Using the knowledge of 
bond lengths and Wyckoff positions, the cell parameters and the 
anangement of atoms are refined for realizable graphs by applying 
simulated annealing techniques and gradiant methods. 

Our approach is applicable more generally to classes of crystal 
structures with only one type of polyhedron and one type of linlc 
between polyhedra. Completeness and adaptability are the main 
features in which it differs from other approaches for the prediction 
of structures. 

PS21.01.10 THE FUNDAlVIENTALREGIONS OF THE POINT 
SYMMETRY GROUPS AS THE BASIS OF THE CLASSIFI­
CATION OF THE STRUCTURAL STATES OF SUBSTANCE. 
N. V. Fyodorova, V. M. Talanov, State Technical University, 
Novocherkassk, 346400, Russia 

We suggest the classification of types of the structural states of 
substance on the basis of the analysis of the point symmetry groups 
fundan1ental regions. The following types of the structural states are 
examine: isosymmetric, enantiomorphous, anti-isostructural, the 
states of the local increase of symmetry (extraordinary, exception­
al), iiTational ( quasicrystalline) states. 

The own isosymmetlic states are possible in the 18 point groups 
(4-3m, 432, m3-, 23, 6/mmm, 6-2m, 6mm, 622,4/mmm,4-2m,4nm1, 
422, 3-m, 3m, 32, mmm, mm2, 222), in which the fundamental re­
gions are linlited by the structural elements of the same types. In the 
six of them (432, 23,622,422, 32, 222), exactly in the turning groups 
having more then one symmetry axis, there are geometlically and 
crystJlographically enantiomorphous vmieties of structural states. 
The tuming groups 2, 3, 4 and 6 occupy the special place, because in this 
groups the geometrically enantiomorphous states are possible not in the 
all classes of objects. The own anti-isostructural states are possible in 11 
groups (4-3m, 432,23, 6-2m, 622, 4-2m, 422, 3-m, 3m, 32, 222). 

The directions of the local increase of symmetry are subdivided on 
the two types: extraordinary and exceptional. the first type take place in 
the 26 point groups (exept m3-m, 6/m, 4/m, 2/m, 1-, 1), in the 6 from 
wllich (6/mmm, 6mm, 622, 4/mmm, 4mm, 422) there are irrational ex­
traordinary directions; the second type are observed in the 11 point groups 
(m3-,23, 4/mmm, 4-2m, 422, 4/m, 4-, 3-m, 32, 3-, 2/m), moreover in all 
these groups there are inational exceptional directions. 

PS21.01.11 TRANSITIONS BETWEEN DIFFERENT CRYS­
TALLINE COORDINATE SYSTEMS. V. A. Liopo, Phys. & 
Engin. Dept., Grodno State U11iversity, Grodno, BELARUS. 230023 

Position of atoms in crystal may be described in 3-D space 
either in crystallophysic (CP) or in crystallographic (CG) systems. 
If P and G m·e matrix-generators of matrical representations of 
point groups in CP and CG systems respectively the relations be­
tween them are 

G=M-LP-M, P=M·G·M-1 

M, M-1 are metlical tensors of direct and resiprocal lattice 
respectively [1]. Let symmetry of crystal is described in N-D space, 
and N x N matrix (N) is matiix-generator of N-D point group. 
Relation between N and 3-D matlix- generator (T) are 

N·P=P·T, IT·N = T ·IT. 

Matrix p is N X 3 ones and matiix rr is 3 X N matrix. There 
m·e two types of t~·ansition between N-d and 3-d spaces. They me 

IT N2-P =T-IT· P-T. N·P·IT·N = P-T2 IT 

For N-T pair the matrices of ti·ansition are P and I1 m1d these 
matrices are ambiguons. 

1. Liopo, V. A. K.!istallographia (Russian). V. 30. N 6. P. 1181-1182. (1985). 

PS21.01.12 THE DENSITY OF ELLIPSES PACKINGS 
WITH SIX CONTACTING NEIGHBOURS. Talceo Matsumoto 
and Masahmu T anemura, Dept. Emth Sciences, Faculty of Sci­
ence, Kanazawa University, J apm1 and Instih1te of Statistical Math­
ematics, Tokyo, Japan 

In contrast with the closeset packing of circles, with plane 
group,p6mm,periodic close packings of identical ellipses do not 
always have the maximum density p=rr~l2 = 0.9069 ..... 

Nowacki(1948) and Gri.inbaum & Shephard (1987) have 
shown altogether seven different close packings of ellipses, with 
six contacting neighbours, namely, c2mm, p2, p2gg, p31m, p3 and 
two p2gg's pasckings in plane groups. 

Matsumoto(1968) and Matsumoto & Nowacki(l966) have 
shown that the first two of the above densest packings of ellipses, 
c2mm (2 a 2mm) and p2(1 a 2) always attain the above maximum 
density. That of the third, p2gg (2 a 2) cannot exceed this maxi­
mum density. The former two packings,c2mm and p2, m·e de1ived 
from the densest packing of circles,p6mm (1 a 6mm), by affine 
transformation, while the p2gg packing of ellipses can never attain 
the ma;'i:imum density of p. 

Tanemura & Matsumoto(1992) have recently indicated that 
the density of p31m(3 c m) packing of ellipses, the fourth one of 
the above list,never exceeds the maximum density, and shows a 
maximum only for the case of axial ratio= !,where the packing is 
equivalent to the p61mn packing of circles. 

Matsumoto & Tanemura(l995) have also shown that the den­
sity ofp3(3 d 1) packing of ellipses, the fifth one of the above list, 
never exceeds the m<Lximum density through numeiical computa­
tions and seiies expansions. This maximum density is attained 
only by the closest packing of circles, p6mm. 

We me now calculating the density of two p2gg's (both 4 c 1) 
packings, the last ones of the above list, by numeiical calculations 
and by expanding forms in terms of£ = k -1 (k = axial ratio) and e 
(tilting angle of ellipse). For these two cases, each density cannot 
exceed the maximum density. 


