S8a.m3.03 Functional implications of tRNA Mimicry. Crystal Structure of Ribosome Recycling Factor. M. Selmer¹, S. Al-Karadaghi¹, G. Hirokawa², A. Kaji² and A. Liljas¹. ¹Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, Sweden ²Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, USA. Keywords: protein biosynthesis.

Ribosome recycling factor (RRF) together with elongation factor G (EF-G) catalyses the fourth step of protein synthesis; ribosome recycling. In this step the posttranslocational complex is separated into its components.

The crystal structure of *Thermotoga maritima* ribosome recycling factor (RRF) has been determined to 2.55 Å resolution.¹ RRF overlaps almost perfectly with a tRNA molecule except that the amino acid binding CCA end is missing. The mimicry suggests that RRF binds to the tRNA binding ribosomal A-site and is translocated to the P-site by EF-G. This mechanism is supported by studies of antibiotic action on the RRF reaction.

s8a.m3.04 Proofreading mechanism hypothesis based on the structure of the Methionyl-tRNA synthetase liganded to L-methionine. L. Serre, G. Verdon, T. Choinowski, N. Hervouet, J.L. Risler, C. Zelwer *Centre de Biophysique Moléculaire, C.N.R.S., rue Charles Sadron, 45071 Orléans Cedex 2, France, zelwer@cnrs-orleans.fr.* Keywords: protein biosynthesis.

Aminoacid selection by aminoacyl-tRNA synthetases requires efficient discrimination mechanisms to avoid the cognate tRNA to be incorrectly charged. A proofreading mechanism enables E. coli methionyl-tRNA synthetase (EcMetRS) to discriminate in vivo L-methionine against Lhomocysteine at the activation step¹. The crystal structure of the complex between EcMetRS and L-methionine solved at 1.8 Å resolution exhibits some intriguing differences with the free enzyme structure². Thus, the methionine δ -sulphur replaces a water molecule H-bonded to Leu13N and Tyr260O? in the free enzyme and rearrangements of aromatic residues enable the protein to form an hydrophobic pocket around the ligand side-chain³. The subsequent formation of an extended water molecules network contributes to relative displacements, up to 3 Å, of several domains of the protein. The structure of this complex is discussed in relation with a likely mechanism for the discrimination between methionine and homocysteine and with cross-talks between different domains of the enzyme.

[1] Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli. *Proc. Natl. Acad. Sci. U S A*, (1990), **87** : 4504-4508.

[2] Mechulam, Y. Crystal structure of *E. coli* methionyl-tRNA synthetase highlights species-specific features. *J. Mol. Biol.*, (1999), **294**: 1287-1297.

[3] Figure legend: Superimposition of native and liganded MetRS backbones at the active site. Green side chains: native, red: complex. L-methionine: magenta.

[1] Selmer et al. (1999) Science 286, 2349-2352