
s1.m1.p11 LiB_x – An Incommensurate Composite Structure at Low Temperatures. M. Wörle^{*}, R. Nesper^{*}, T. Chatterji⁺, ^{*}Laboratory of Inorganic Chemistry, ETH Zürich, Universitätstr. 6, CH-8092 Zürich; ⁺Institut Laue Langevin, BP156, F-38042 Grenoble Cedex 9. Keywords: aperiodic, incommensurate.

The lithium boride LiB_x (0.82 < x < 1.0) the first boride known to contain linear boron chains, isoelectronic to carbyne which are embedded and stabilized in a lithium matrix¹. Indeed, this compound contains a surprising solution to the famous carbyne problem. At room temperature the boron chains are disordered, giving rise to diffuse scattering in the corresponding X-ray and neutron powder diffraction patterns. At about 150 K a second order phase transition takes place which leads finally to the formation of an incommensurate composite structure. The crystal structures at 2 K of both sublattices were determined from the neutron diffraction experiment and refined in the space group P-1($\alpha\beta\gamma$).

s1.m1.p12 New incommensurate misfit layer oxides in the system (Bi, Ca, Co, O). S. Lambert, H. Leligny, D.

Grebille, *Lab. CRISMAT (UMR CNRS 6508), ISMRA, 14050 CAEN Cedex.* Keywords: misfit, incommensurate, oxide.

Recently, a new family of oxide composite structures has been discovered in the [Bi-(Sr,Ca)-Co-O] and [Tl-(Sr,Ca)-Co-O] systems and characterized by E.M. and EXAFS observations^{1,2}. It shows strong analogies with the well known family of misfit layered chalcogenides $(MX)_{1+x}(TX_2)_m^3$ with the alternate stacking along c of pseudohexagonal layers and rock-salt type layers, sharing the same a parameter but exhibiting two incommensurate periodicities along b.

A first structural study of the $[Bi_{0.87}SrO_2]_2[CoO_2]_{1.82}$ phase in the 5D superspace formalism was carried out using single crystal X-ray diffraction data.⁴

A more systematic investigation of these families has been carried out. Single crystals and powder samples of the prototype phase Ca₃Co₄O₉ and of a Bi substituted phase $(Bi_{0,11}Ca_3Co_{3,7}O_9)$ have been synthetized. А characterization of the symmetry of these phases will be presented using Weissenberg or precession photographs and synchrotron X-ray diffraction patterns. The symmetry of the Bi free phase is monoclinic (a= 4.85Å, b=4.55Å, c=10.74Å, β =98°) and the sample presents a twinning phenomenon. Some extra reflections are observed in the common (a*,c*) plane and can be explained assuming an intrinsic modulation within the RS sublattice. The Bi substituted phase, in spite of a weak substitution rate and of very close values of the cell parameters, shows a different orthorhombic symmetry. A fisrt description of this structure is proposed.

[1] Boullay Ph. , Evidence for the first misfit layer oxide $Tl_{0.41}(Sr_{0.9}O)_{1.12}CoO_2,$ Chem. Mater. (1996) 8:1482-1489

[2] Boullay Ph. Chem. Mater. Chemical and physical aspects of the misfit layer oxides $T_{kl}[(Sr_{1y}Ca_y)O]_{1+x}(CoO_2)$ (1998) 10 : 92-102

[3] Rouxel J. Chalcogénures lamellaires à structures désaccordées (composés misfit), C.R. Acad. Sci. (1996) 323-1(b) : 41-57.

[4] Leligny H., A 5D structural investigation of the misfit layer compound [Bi_{0.87}SrO₂]₂[CoO₂]_{1.82}, Acta Cryst (2000) B56, in press.

[1] Wörle M., Nesper R. "Infinite Linear Unbranched Borynide Chains in $LiB_x\,$ – Isoelectronic to Polyyne and Polycumulene", Angewandte Chemie, in press