role of intra- and intermolecular |s9.m1.p7| The hydrogen bonding in the crystal structure of arylsulfonyl- guanidine derivatives. I. Dybala¹, A.E. Koziol¹, E. Szacoñ², D. Matosiuk². ¹Dept. of Chemistry, Maria Curie-Sklodowska Univ., Lublin, Poland, 2 Dept. of Medicines Technology, Faculty of Pharmacy, Medical Univ., Lublin, Poland.

hydrogen bond, Keywords: arylsulfonylguanidine, guanidine derivative.

Three structures of arylsulfonylguanidine derivatives (I N-aryl-; II and III N-alkyl-) have been determined by Xray crystal structure analysis. The intramolecular N-H-O hydrogen bonding is observed in all molecules, while various substituents present in analysed compounds determine different types of intermolecular hydrogen bonds.

		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		I	-CH ₃	-Ph		
		11	-Cl	-CH ₂	CH ₃	
		III	-Cl	-CH ₂	Ph	
-				intramolecular N···O 2.836 Å ∠125°		
II	intramolect NO 2.766 Å ∠136°					
111	C-N intramolecu N···O 2.799 Å ∠139°					

I: Molecules linked by the intermolecular N-H--O hydrogen bonds form dimers (N···O distance 2.942 Å).

II: The intramolecular N-H--O hydrogen bond closes a six-membered ring.

III: Molecules form chains by weak bifurcated N-H--O and N-H--N intermolecular hydrogen bonds (N--O and N...N distances are 3.282 and 3.408 Å, respectively).

Intermolecular interactions influence a conformation of the O2-S-N2-C2-N3 fragment and orientation of substituents at the N and S atoms.

|s9.m1.p8| Inclusion crystals of finasteride. I. Wawrzycka^a, A.E. Koziol^a, E. Cendrowska^b, ^aDepartment of Chemistry, M. Curie-Sklodowska Univ. Lublin, Poland, ^bDepartment of Chemistry, A. Mickiewicz Univ. Poznan, Poland.

Keywords: finasteride, steroids, inclusion crystals.

Finasteride [17β -(*N-tert*-butylcarbamoyl)-4-aza-5aandrost-1-en-3-one] is a modified steroid derivative. The ring A contains lactam group and the C17 atom is substituted with the tert-butylamide residue.

Finasteride crystallizes from ethanol[1] and DMSO solutions as the homomolecular crystal. It seems that the size of a solvent molecule has influence on form of inclusion crystals. The crystallization from other organic solvents gives isostructural clathrates (in the orthorhombic space group P2₁2₁2₁) with the bis-finasteride monohydrate unit as a host.

	Solvent	Unit cell dimensions [Å]
1	ethyl acetate ^[1]	a = 8.173(3)
	•	b = 18.364(6)
		c = 35.65(2)
2	toluene	a = 8.138(2)
		b = 18.526(4)
		c = 34.770(7)
3	2-butanol	a = 8.113(2)
		b = 17.979(4)
		c = 35.802(7)
4	2-propanol	a = 8.162(5)
	• •	b = 18.29(2)
		c = 35.92(3)
5	butyl acetate	a = 8.185(7)
	•	b = 18.33(3)
		c = 35.82(3)
6	chloroform	a = 8.167(2)
	·	b = 17.897(6)
		c = 36.24(1)

Structures of 2 and 3 have been determined by X-ray crystallography using data collected on a KM4CCD diffractometer at 130K. Unit cell dimensions for crystals of 3, 4 and 5 were determined on a KM4 diffractometer.

In the crystal lattice, two symetrically independent finasteride molecules are linked by N-H-O hydrogen bonds between the lactam groups of the ring A. The water molecule is a double H-bond donor to the lactam O-atoms and an acceptor from the amide N-atom, which gives three-dimensional net with channels. The size of these channels is suitable for enclathration of solvent molecules, both polar and nonpolar.

^[1] Wawrzycka I. et al. "Structural characterization of polymorphs and molecular complexes of finasteride." J. Mol. Struct. (1999) 474: 157 -