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The Second Report of the Subcommittee on the Nomenclature of n-

Dimensional Crystallography recommends speci®c symbols for R-irreducible

groups in 4 and higher dimensions (nD), for centrings, for Bravais classes, for

arithmetic crystal classes and for space groups (space-group types). The relation

with higher-dimensional crystallographic groups used for the description of

aperiodic crystals is brie¯y discussed. The Introduction discusses the general

de®nitions used in the Report.

1. Introduction

Recommended symbols for symmetry operations, lattice

systems, families and geometric crystal classes in 4D, 5D and

6D have been presented in Report I (Janssen, Birman et al.,

1999). Similar recommendations are given in this Report for

the symbols of crystallographic elements in nD, in particular

for Bravais classes, centrings, arithmetic crystal classes and

space-group types. We abbreviate the term `space-group type'

to `space group', unless there is a reason to do otherwise.

Some material that belongs to the topics of the ®rst Report but

was left out there will also be dealt with, in particular the

question of symbols for (R-)irreducible point groups.

In principle, the crystallographic groups, arithmetic and

geometric crystal classes, and space groups, are available in

dimensions 1±6 via the program CARAT, developed in

Aachen by W. Plesken and collaborators. It can be obtained

via their web site http://wwwb.math.rwth-aachen.de/carat/

index.html. The notation and presentation given there is not

easily adapted for crystallographic use, but all the information

is present. According to that source the number of various

classes in dimensions up to six is

The numbers of families and Bravais classes have been

published in Plesken & Schulz (2000) and Opgenorth et al.

(1998), respectively. The numbers increase rapidly with the

dimension. A natural consequence is that the symbols have to

be more and more complex. Also, it is clear that tables of these

higher-dimensional groups are impossible. Fortunately, the

number of higher-dimensional space groups needed for the

description of aperiodic crystals is much lower. For example,

there are only 370 non-isomorphic space groups of this type in

4D. As in 3D, where there are 11 enantiomorphic pairs of

space groups, enantiomorphism occurs in higher dimensions as

well. The number of enantiomorphic pairs, however, is not

given in the table above.

A short review of the terminology used, and the de®nitions

of the main notions, is presented ®rst. De®nitions may also be

found in Vol. A of International Tables for Crystallography

(Hahn, 2002), referred to hereafter as ITA. The concepts are

clari®ed by examples in the third section. Nomenclature and

symbols are discussed in xx4±8. Recommendations are given in

Dimension: 1 2 3 4 5 6

Families 1 4 6 23 32 91
Bravais classes 1 5 14 64 189 841

Geometric classes 2 10 32 227 955 7104

Arithmetic classes 2 13 73 710 6079 85311

Space groups 2 17 219 4783 222018 28927922

² Chairman.

³ Ex officio, IUCr Commission on Crystallo-

graphic Nomenclature.

1 Subcommittee renewed by the IUCr Commission on Crystallographic
Nomenclature 18 March 1999 with all present co-authors as members. Original
version of the Report received by the Commission 22 April 2002, accepted 19
July 2002.
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x9. Evidently, the choice of a symbol is a compromise between

information richness and conciseness. It is, for that reason, also

a matter of taste. Sometimes alternatives will be given. The

practice should make it clear what is the best choice.

Precise de®nitions are often rather dry. To be precise, a

mathematical formulation is needed, but the notions have a

crystallographic basis and can be described in a more heuristic

way. Although we have avoided as much as possible a math-

ematical symbolism, the section on de®nitions will not be easy

to digest for everybody. Therefore, we have chosen a two-

track approach. In x2, a mathematical formulation is given

and, in x3, the same notions are introduced in a more

descriptive way, with examples. The reader could choose to

skip x2 and go directly to x3. To make the correspondence

clearer, we have inserted a number of cross references.

2. Definitions and symbols

A distance exists in a Euclidean space that is invariant under

rigid-motion transformations. These form the Euclidean group

E�n� in the n-dimensional Euclidean space. A subgroup of

E�n� is the group of translations T�n�. If an origin is chosen,

then the subgroup of E�n� leaving this origin invariant is the

orthogonal group in n dimensions, denoted by O�n�. The

subgroup of E�n� leaving an arbitrary point invariant is

conjugate to O�n�. The elements of E�n� are pairs fRjtg of an

orthogonal transformation R and a translation t. The product

of two elements is given by

fR1jt1gfR2jt2g � fR1R2jt1 � R1t2g:

This is the de®nition of a semi-direct product. Similarly, the

af®ne group is the semi-direct product of the group of trans-

lations and the group of non-singular linear transformations.

De®nition 1: Crystallographic space group. An n-dimen-

sional crystallographic space group G is a subgroup of E�n�
such that its subgroup of translations is generated by n inde-

pendent translations.

Comment: A space group does not have a ®xed point. The

translations belonging to the space group form a subgroup,

called the (translation) lattice. The points obtained from the

origin by the translation lattice is called the (point) lattice of

the space group. The set of orthogonal transformations R for

all elements fRjtg in the space group leaves the origin ®xed

and forms a group of transformations that leaves the lattice of

the space group invariant. This group is the point group

associated with the space group.

There are other space-group types than crystallographic.

An arbitrary subgroup of E�n� that leaves no point invariant

(it is ®xed-point free) is called a space group and the crys-

tallographic space groups are just special cases. In general, the

translation subgroup is not generated by n independent

translations. This is the case if the translation subgroup does

not span the whole space, as for band and frieze groups. It also

occurs if the translation subgroup is not generated by n

independent translations but by more. For example, the

translation group in 2D generated by ®ve vectors making an

angle of 2�=5 with each other is generated by at least four

translations. Then the generated point set becomes dense and

the space group is not crystallographic. When there is no

ambiguity, `crystallographic space group' may be abbreviated

to `space group'.

De®nition 2: Crystallographic point group. A subgroup of

O�n� is a crystallographic point group if it leaves an

n-dimensional lattice invariant.

Comment: The translation subgroup of a space group G is

an invariant subgroup and the factor group is isomorphic to

the point group K. Moreover, the point group leaves the

lattice invariant and is for that reason a crystallographic point

group. A crystallographic point group is ®nite.

De®nition 3: Geometric crystal class. Two point groups are

called equivalent if they are conjugate subgroups of the

orthogonal group O�n�. The equivalence classes for the crys-

tallographic point groups are called the geometric crystal

classes.

De®nition 4: Equivalence of space groups. Two (crystal-

lographic) space groups are called equivalent if they are

conjugate subgroups of the af®ne group. By Bieberbach's

theorem (Bieberbach, 1911), this is equivalent to stating that

two crystallographic space groups are equivalent if they are

isomorphic. The equivalence class of a space group is called

the space-group type.

De®nition 5: Holohedry. The holohedry of a lattice is the

point group consisting of all orthogonal transformations

leaving the lattice invariant.

De®nition 6: Lattice system. Two lattices belong to the same

lattice system if their holohedries are geometrically equiva-

lent.

A lattice is spanned by n translation vectors a1; a2; . . . an.

The lattice is then characterized by the scalar products.

De®nition 7: Metric tensor. The metric tensor of a lattice is

the tensor with elements gij � ai � aj.

Under an element of a point group K, the basis ai trans-

forms to a basis bi and the metric tensor transforms to the

tensor with elements

g0ij � bi � bj �
P
kl

RkiRljgkl $ g0 � RTgR:

Here the superscript T denotes the transpose.

Because point groups are subgroups of O�n�, they can be

presented as groups of orthogonal matrices, on an ortho-

normal basis. The group of all orthogonal matrices will also be

denoted by O�n�. A crystallographic point group leaves an

n-dimensional lattice invariant. Therefore, on a basis of such

an invariant lattice, they are presented as groups of (inver-

tible) integer matrices. The group of all n-dimensional inver-

tible integer matrices is denoted by GL(n;Z).

De®nition 8: Arithmetic point group. An arithmetic point

group is a ®nite group of nD integer matrices.

Comment: The group of matrices presenting the nD crys-

tallographic point group K depends on the choice of basis for

the invariant lattice. Another basis is obtained from the ®rst

by an element of GL(n;Z). Therefore, the point group K

corresponds to the set of all arithmetic groups that are



conjugate in GL(n;Z) to the ®rst. This leads to a new

equivalence.

De®nition 9: Arithmetic crystal class. Two arithmetic point

groups belong to the same arithmetic crystal class if they are

conjugate subgroups of GL(n;Z).

Two crystallographic point groups in the same geometric

crystal class correspond after a choice of invariant lattice basis

to two arithmetic point groups that are conjugate by a rational

matrix. If there is a conjugating integer matrix, then the

two groups are arithmetically equivalent, otherwise at least

geometrically equivalent. This means that we can de®ne the

geometric crystal class of an arithmetic point group as the set

of all arithmetic point groups conjugate to the ®rst by a

rational matrix. This implies that each geometric crystal class

consists of complete arithmetic crystal classes. In other words,

if two arithmetic point groups are arithmetically equivalent

they are also geometrically equivalent.

The point group of a space group becomes an arithmetic

point group on a basis that is a basis for the lattice of the space

group. Any other lattice basis will lead to an arithmetically

equivalent arithmetic group. Therefore, a space group deter-

mines an arithmetic crystal class, and consequently also a

geometric crystal class. Par abus de langage, space groups may

be considered to belong to a well determined arithmetic and

geometric crystal class.

In the following, we shall make no distinction between point

groups as groups of transformations or as groups of matrices.

Because a space-group element is a pair of an orthogonal

transformation and a translation, which correspond to an

n-dimensional matrix and an n-dimensional vector, respec-

tively, the space-group element may also be associated with a

pair of an integer matrix and a (real) vector. This is sometimes

conveniently presented as an (n� 1)-dimensional matrix

R t

0 1

� �
:

De®nition 10: Arithmetic holohedry. The arithmetic holo-

hedry of a lattice with metric tensor g is the group of invertible

integer matrices D�R� such that D�R�TgD�R� � g.

Comment: Because the metric is left invariant, the group is

equivalent to a group of orthogonal matrices. Because the

group leaves the lattice invariant, it is a ®nite subgroup of

GL(n;Z).

De®nition 11: Bravais class. Two lattices belong to the same

Bravais class if their arithmetic holohedries are arithmetically

equivalent.

Comment: Because two arithmetically equivalent (arith-

metic) point groups are also geometrically equivalent, each

lattice system consists of whole Bravais classes.

De®nition 12: Bravais group. The set of tensors left

invariant by an arithmetic point group D�K� is denoted by SK

and de®ned as the set of metric tensors g for which

D�R�TgD�R� � g

for every R in K. Then the Bravais group of D�K� is the group

of all integer matrices D�R� leaving all tensors in SK invariant:

B�K� � fD�R� 2 GL�n;Z�jD�R�TgD�R� � g; all g in SKg:
De®nition 13: Bravais class of an arithmetic point group.

The Bravais group of an arithmetic point group is an arith-

metic holohedry. Two arithmetic point groups belong to the

same Bravais class if their Bravais groups are arithmetically

equivalent.

In this way, arithmetic point groups (and therefore crys-

tallographic space groups) may be grouped together. A

coarser subdivision is given by the following.

De®nition 14: Point-group system. Two geometric crystal

classes belong to the same point-group system if there are two

representatives of these classes with geometrically equivalent

Bravais groups.

De®nition 15: Family. A family of point groups (and of

space groups) is the smallest union of point-group systems and

Bravais classes of point groups such that with each crystal-

lographic point group both its point-group system and its

Bravais class belong to the union.

Comment: Since each space group determines an arithmetic

crystal class and the Bravais class of its lattice, space groups

and lattices can also be assigned to a well de®ned family.

De®nition 16: Conventional lattice. In each family, one

lattice is chosen such that the arithmetic holohedry of every

lattice belonging to the family is equivalent by a rational

matrix with the arithmetic holohedry of the chosen lattice, or

one of its subgroups.

Comment: Usually, but not always, a lattice with a holo-

hedry of maximal order is chosen. The rational matrix in the

de®nition is the centring matrix. The determinant of its inverse

is the number of points of the lattice inside the conventional

unit cell. This number is called the index of the centred lattice

in the conventional lattice. The arithmetic holohedry is usually

chosen to show the reducibility of the holohedry, and to have

the `simplest' form. Especially the last criterion means that the

choice is sometimes not unique. A basis for the conventional

lattice is a conventional basis.

De®nition 17: Reducibility. An arithmetic point group is

Z-reducible if there is an invariant sublattice of lower

dimension. An arithmetic point group is R-reducible if there is

a proper invariant subspace. An arithmetic point group is

Z- (or R-)irreducible if it is not Z- (or R-)reducible.

Comment: One may distinguish between reducibility,

decomposability and full reducibility. An arithmetic point

group is Z-reducible if by a basis transformation from

GL(n;Z) all elements may be brought to the form

A B

0 D

� �
simultaneously, with the same dimensions of A;B and D for all

elements. The group is Z-decomposable if by such a basis

transformation the elements may be brought into the form

A 0

0 D

� �
simultaneously. The group is fully reducible if the elements

may be transformed by an element of GL(n;Z) to a direct sum
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of Z-irreducible components. Similarly, the Q- and R-reduci-

bility, Q- and R-decomposability and full Q- and R-reducibility

are de®ned if the basis transformations are from GL�n;Q� and

GL�n;R�, respectively. Z-reducibility implies Q-reducibility,

and the latter implies R-reducibility. On the other hand,

R-irreducibility implies Q-irreducibility, and the latter implies

Z-irreducibility.

De®nition 18: Reducibility pattern of a crystallographic
point group. The reducibility pattern is the space dimension

n written as the sum of the dimensions of the irreducible

components.

Comment: Generally, the reducibility pattern is different for

the Z-reducibility and for the R-reducibility. The R-irreducible

subspaces carry a real irreducible representation of the point

group. The numbers in the reducibility pattern indicating

the dimension of equivalent representations are enclosed in

parentheses.

3. Explanation of the definitions

The de®nitions given above are somewhat mathematical in

character, in order to be precise. Since their meanings,

however, should be quite clear for crystallographers using

them, some examples are now offered in which the de®nitions

are discussed less formally.

Rigid motions in n dimensions (nD) are pairs of nD

orthogonal transformations and nD translations. After the

choice of an origin and a basis of the nD space, these rigid

motions correspond to n� n matrices and nD vectors.

R11 . . . R1n

R21 . . . R2n

..

. . .
. ..

.

Rn1 . . . Rnn

0BBB@
1CCCA

t1

t2

..

.

tn

0BBB@
1CCCA

���������

1CCCA
0BBB@ :

An equivalent description, as used in ITA (Hahn, 2002), gives

the transforms of an arbitrary point in the unit cell under the

space-group elements, modulo the lattice translation vectors.

For example, the groups Pma2 and P2cm are given as follows.

Pma2 : x; y; z �x; �y; z x� 1
2 ; �y; z �x� 1

2 ; y; z

P2cm : x; y; z x; �y; �z x; �y; z� 1
2 x; y; �z� 1

2 :

This is a shorter way to give the transformation if there are

many zeros in the matrix. A (crystallographic) space group is a

group of rigid motions [De®nition 1]. The corresponding

orthogonal transformations form the point group [De®nition

2], the translations form an nD lattice. On a basis of this lattice,

the matrices of the point group have integer entries and are,

generally, not orthogonal. By a change of basis S and of origin

a, the matrices R and the vectors t change according to

R! SRSÿ1; t! St � �1ÿ SRSÿ1�a:
The 3D space groups Pma2 and P2cm are equivalent via a

basis transformation interchanging x and z.

Two space groups are considered to be identical if there is

an origin shift and/or basis transformation that brings the

matrices and translation vectors of the ®rst into the same form

as those of the second [De®nition 4]. All space groups that are

equivalent in this sense form an equivalence class. If there is a

real basis transformation bringing the matrices of one point

group in the same form as those of another, then the point

groups belong to the same geometric crystal class [De®nition

3]. A crystallographic point group with respect to an invariant

lattice is a group of integer matrices. Two such groups are

arithmetically equivalent if there is a basis transformation for

one of the lattices such that the integer matrices become the

same [De®nition 9]. Because such lattice basis transformations

are given by integer matrices, arithmetic equivalence is

stronger than geometric equivalence. Geometric crystal

classes contain complete arithmetic crystal classes. In 3D,

there are 32 geometric crystal classes and 73 arithmetic crystal

classes. The geometric crystal class 2=m contains two arith-

metic crystal classes: 2=mP and 2=mC:
The other de®nitions relate to the equivalence of lattices

and the classi®cation of space groups, and to the ordering of

space and point groups in hierarchical structures. Lattices are

characterized by the matrix of n2 scalar products of the n basis

vectors. This is the metric tensor [De®nition 7]. For example,

the metric tensor for a 3D monoclinic lattice is

g �
a1 � a1 a1 � a2 a1 � a3

a1 � a2 a2 � a2 a2 � a3

a1 � a3 a2 � a3 a3 � a3

0@ 1A � a b 0

b c 0

0 0 d

0@ 1A:
The subgroup of the orthogonal group that leaves the lattice

invariant (each lattice point is transformed into a lattice

point), the symmetry of the lattice, is the holohedry of the

lattice [De®nition 5]. For the lattice with metric tensor given

above, the holohedry is just a point group of the geometric

class 2=m. Two lattices are considered to be equivalent if their

symmetry groups are different settings of the same point

group, which happens if the holohedries are in the same

geometric crystal class. All lattices equivalent to a certain

lattice form a lattice system [De®nition 6]. All 3D cubic

lattices (whether they are primitive, b.c.c. or f.c.c.) belong to

one lattice system.

Because the holohedry leaves the lattice invariant, its

matrices are integer if the chosen basis is a basis of the

invariant lattice. As a group of integer matrices, it is called the

arithmetic holohedry [De®nition 10]. The adjective `arith-

metic' is used for groups of integer matrices and their crystal

classes. The term `arithmetic crystal class' is standard. Here we

use the term arithmetic point group for any ®nite group of

integer matrices [De®nition 8] and arithmetic holohedry as

well. Because a change of basis gives an arithmetic holohedry

in the same arithmetic crystal class, one may introduce a ®ner

classi®cation of lattices. Two lattices are equivalent if their

arithmetic holohedries are in the same arithmetic crystal class.

The corresponding equivalence class of lattices is the Bravais

class [De®nition 11]. For example, there are 7 lattice systems

but 14 Bravais classes in three dimensions.

For each arithmetic point group, there is a unique arith-

metic holohedry as supergroup. It is called the Bravais group

of the (arithmetic) point group [De®nition 12]. The term



`Bravais' is used for the equivalence of lattices or for the

holohedry of a lattice invariant under a given point group

[De®nition 13]. Every lattice left invariant under the 3D point

group mP is also invariant under 2=mP. At the same time, this

is the largest group that leaves invariant all lattices invariant

under mP. Therefore, 2=mP is the Bravais group of mP. It is

the arithmetic holohedry of every primitive monoclinic lattice

in 3D.

The lattice of a space group is invariant under its point

group. Therefore, a choice of basis for the lattice gives a group

of integer matrices, an arithmetic point group. A change of

lattice basis gives an arithmetically equivalent group of

matrices. Thus the space group determines a unique arithmetic

crystal class. The classi®cation hereafter branches, one branch

going from arithmetic crystal classes to geometric crystal

classes, and on to point-group systems, the other going from

arithmetic crystal classes via Bravais groups to Bravais classes.

Both branches come together in the most general classes: the

families. (See Fig. 1 of Report I.)

As an example, the 3D space group I41=a determines the

arithmetic crystal class 4=mI, which is contained in the

geometric crystal class 4=m. This belongs to the tetragonal

system with holohedry 4=mmm. On the other hand, the

arithmetic point group 4=mI has 4=mmmI as its Bravais group.

This is the arithmetic holohedry of the body-centred tetrag-

onal Bravais class. In this case, the family has lattices with

holohedry 4=mmm. It is the tetragonal family.

The notions of system and family [De®nitions 14±15] are

exempli®ed by the case of the point groups in the hexagonal

family in 3D. All lattices in this family have two free par-

ameters. However, there are two systems, those with the

rhombohedral lattice with holohedry �3m and those with a

hexagonal lattice with holohedry 6=mmm.

The matrices of the point group on a lattice basis do not, in

general, clearly show the character of the transformation. In

many cases, this becomes clearer if a sublattice basis is chosen.

The space-group lattice is obtained from the sublattice basis

by the addition of vectors in the unit cell of the latter. This is

the centring. The matrices and vectors corresponding to the

orthogonal transformations and translations of the rigid

motions then are given with respect to a conveniently

chosen sublattice basis, the conventional basis

[De®nition 16].

In the 3D cubic family (m�3m), there are three Bravais

classes: P, I and F. The reason for choosing P as the conven-

tional lattice is to make the point-group matrices orthogonal,

with each row and each column having precisely one non-zero

entry. Both I- and F-lattices have a sublattice of the m�3mP

Bravais class. Bases for the two lattices are obtained from the

conventional basis by (rational) basis transformations with

determinant 1=2 and 1=4 (indices 2 and 4), respectively.

1
2

ÿ1 1 1

1 ÿ1 1

1 1 ÿ1

0@ 1A; 1
2

0 1 1

1 0 1

1 1 0

0@ 1A:

The centring may be given by the basis transformation or by

the lattice vectors inside the conventional unit cell. For the

examples, these are 0; 0; 0; 1
2 ;

1
2 ;

1
2 and 0; 0; 0; 1

2 ;
1
2 ; 0; 1

2 ; 0; 1
2;

0; 1
2 ;

1
2. The index of the I-lattice is two, that of the F-lattice is

four.

Examples of the different types of (ir)reducibility

[De®nition 17] are the following. The group 2=mP in 3D with

generating matrices

ÿ1 0 0

0 ÿ1 0

0 0 1

0@ 1A; 1 0 0

0 1 0

0 0 ÿ1

0@ 1A
is Z-reducible, Z-decomposable and fully Z-reducible (see the

comments after De®nition 17). Therefore, it is also fully Q-

and R-reducible. The group mc in 2D with generating matrix

0 1

1 0

� �
is Z-reducible, but not Z-decomposable. It is Q-decomposable

and fully Q-reducible, and hence also fully R-reducible. The

point group [8]P4 in 4D generated by

0 0 0 ÿ1

1 0 0 0

0 1 0 0

0 0 1 0

0BB@
1CCA

is Z- and Q-irreducible, but fully R-reducible. The cubic group

m�3mP is R-irreducible, and hence also Q- and Z-irreducible.

Examples of the R-reducibility patterns [De®nition 18] in

3D are the following:

In each symbol, the dimensions of the irreducible repre-

sentations appearing in the point group are given, adding up to

n. Equivalent irreducible components are put in parentheses.

The distinction between Z- and R-reducibility patterns is

illustrated with the following examples in 4D:

The ®rst point group may be brought into reduced form by

integer matrices, and hence also by real matrices. The second

only by a real matrix, the third not by a real matrix and hence

neither by an integer matrix.
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Point group Pattern Comments

�1 (1+1+1) xyz space for the single irrep.
2=m (1+1)+1 xy plane for one irrep, the z axis for

another.
mmm 1+1+1 three different one-dimensional

representations.
4=mmm 2+1 invariant xy plane and invariant

z axis.
6=mmm 2+1 invariant xy plane and invariant

z axis.
m�3m 3 three-dimensional irrep.

Point group R pattern Z pattern

6m?6m 2+2 2+2
5m�52m� 2+2 4
m�3m:�8� 4 4
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4. Geometric crystal classes revisited

Symbols for R-reducible geometric classes were recommended

in Report I, based on the symbols for geometric crystal classes

in lower dimensions but not a notation for the R-irreducible

cases. As the proposed symbols were generalizations of the

Hermann±Mauguin symbols, it is logical to use this same

approach for the R-irreducible classes. The Hermann±

Mauguin symbols are based on the choice of a set of genera-

tors for a point group in the class. These generators are given

by the corresponding symbols for orthogonal transformations,

as presented for arbitrary dimensions in Report I.

The symbols should be unique, in the sense that a given

symbol should correspond only to one geometric crystal class.

Moreover, the symbol should give as much information about

the structure of the group as is compatible with conciseness.

The latter condition tends to smaller sets of generators. The

mutual orientation of the symmetry operators, i.e. the mutual

orientation of axes and invariant subspaces is clear for

R-reducible point groups in 3D, but is not clear for R-irre-

ducible cubic groups. The orientation of the mirror planes in

the symbol m�3m, with respect to the threefold rotation axis,

is not directly speci®ed. This same problem occurs often in

higher-dimensional spaces.

More information about a point group may be given by

using the property that a point group may often be

constructed as the product of some of its subgroups. The

product may be indicated by `�' when the product is a direct

product or by a dot `:' for the general case. When the point

group is the direct product of two subgroups acting in

mutually perpendicular subspaces, the direct product is indi-

cated by the symbol ?. The Hermann±Mauguin symbol may

be generalized by composing the symbol for the whole group

from the symbols for these generating subgroups, some of

which can be cyclic, in which case their symbol is just the

symbol for a generator. A complicating factor now is that the

symbols for orthogonal transformations often consist of more

than one character. For example, the symbol 32 represents

both a four-dimensional rotation (a threefold rotation in a

two-dimensional subspace and a twofold rotation in a

perpendicular two-dimensional subspace) and a three-

dimensional point group of order six in the hexagonal family.

It is important to clarify which of the two meanings the symbol

represents when used for a higher-dimensional point group.

We recommend placing the symbol for a point group in

parentheses if it forms one of the generating point groups for

the case under consideration, unless no confusion is possible.

The symbol 3m only occurs for a 3D point group of order six,

Table 1
Tables of R-irreducible geometric crystal classes in four dimensions.

(a) The geometric crystal classes of the four-dimensional family 21.

System Order Symbol Alternative BBNWZ No.

21_1 20 [5].�4 31/01
40 [5].�4� �14 [10].�4 31/02
60 [5].(23) 31/03

120 [5].(23)��14 [10].(23) 31/04
120 [5].(23).�1 [5].(�4:3:�1) 31/05
120 [5].(�43m) 31/06
240 [5].(�43m)��14 [10].(�43m) 31/07

(b) The geometric crystal classes of the four-dimensional family 22.

System Order Symbol Alternative BBNWZ No.

22_1 18 3?3.2 63.3 29/01
36 61(63).2 66.63 29/02
36 3m1(1m3).2 63.32 29/03
36 3m1(1m3).�4�36� �4.3?3 29/04
72 6m1(6m3).2 (66.63)��14 29/05
72 6m1(6m3).�4�72� (�4.3?3))��14 29/06
72 3m?3m.2 �42m.(3?3) 29/07
72 6m1(m63).2�72� �4:�3:3 29/08

144 6m11(613m).2 (63.2).�3m 29/09
22_2 12 6(6).�4�12� 44.33 30/01

24 6m(6m).44�24� (44�2).33 30/02
24 61(32).44�24� [12].63�24� 30/03
24 6m(6m).2 (66.2).63�24� 30/04
36 61(63).44�36� [12].3 30/05
48 6m1(3m2).44�48� [12].222 30/06
72 6?6.44�72� [12].6 30/07
72 6m1(6m3).2 63.62.2 30/08
72 6m1(6m3).44�72� [12].3.[12]�72� 30/09

144 6m1(1m6).2 [12].(622) 30/10
144 6m1(1m6).�4�144� (6?6).�4 30/11
144 6m11(613m).44�144� [12].�3m 30/12
288 6mm?6mm.2 ([12].2).6mm 30/13

(c) The geometric crystal classes of the four-dimensional family 23.

System Order Symbol Alternative BBNWZ No.

23_1 8 44.44 44.44�8� 32/01
16 [8].2.[8] [8].[8]�16� 32/02
16 [8].44.2 [8].(44.2)�16� 32/03
16 44.44.2 44.(44�2��16� 32/04
24 44.44.3 62.44 32/05
32 [8].2.2 ([8].2).44�32� 32/06
32 [8].[8].[8] [8].[8].[8]�32� 32/07
32 [8].(4?4) [8].4 32/08
32 44.�4.2 (44.2).�4 32/09
32 44.44.(222) (44�2�:�44� 2��32� 32/10
48 [8].44.3 [8].62 32/11
64 �4.4?4.�4 [8].(422) 32/12
64 [8].�4.m [8].mmm 32/13
64 44.44.�4 (44.44).mmm�64� 32/14
64 (4?4).�4 (4?4).�4 32/15
96 (23).44 (44� 2).(23) 32/16

128 [8].(4?4).m [8].(4?4) 32/17
192 (�3m).44 (44�2).m�3 32/18
192 ��43m).44 (44�2).�43m 32/19
192 (432).44 [8].432 32/20
384 [8].m�3m 4.3.2.mmmm 32/21

23_2 24 [12].[12]�24� 33/01
24 [8].33 33/02
24 66.44 33/03
48 [12].[8]�48� 33/04
48 [12].(44�2)�48� 33/05
48 [8].66 33/06
72 [12].62 33/07
96 ([12].[12]).222�96� 33/08
96 ([12].2).[8]�96� 33/09
96 [12].(4?2) 33/10

144 ([12].[8]).3�144� 33/11
192 [12].(4?4) 33/12
288 ([12].[12]).23�288� 33/13
576 ([12].[12]).�43m�576� 33/14
576 ([12].2).(432) 33/15

1152 ([12].2).m�3m 33/16



not as a symbol for an orthogonal transformation. In that case,

parentheses are not necessary.

An example of a point group that requires parentheses is

(32)�44 obtained by taking the direct product of the 3D point

group 32 and the 4D cyclic group generated by an orthogonal

transformation 44; 32�44 is the direct product of two cyclic

groups, one with the sixfold rotation 32 as generator, the other

with the fourfold rotation 44.

The order of the group is not necessarily the product of the

orders of the generating subgroups. Although it is not always

possible to choose subgroups generating the full group in such

a way that the product of their orders is the order of the full

group, it is convenient to make such a choice, whenever

possible, because this immediately gives information about the

group. In Table 1, recommendations are made for symbols of

the R-irreducible point groups in four dimensions, belonging

to the families 21±23 (Table 4 in Report I). This supplements

Table 3 in Report I. For comparison, in addition to the

recommended symbol the number in Brown et al. (1978) is

given (BBNWZ No.). In Table 2, some examples of R-irre-

ducible point groups are given in ®ve and six dimensions.

There are several in®nite series of R-irreducible groups with

very similar structure in various dimensions. The use of similar

symbols is recommended in these cases. The ®rst series is that

of hypercubic groups, generated by the permutations of the n

axes and the n mirrors perpendicular to the axes. Their order is

hence 2n:n!. The ®rst members of the series are the 2D group

4mm and the 3D group m�3m. A second series is that of the

symmetry groups of the generalized (n� 1)D rhombohedral

lattices, of order 2:�n� 1�!. The lattice is the projection of a

generalized rhombohedral lattice on a hyperplane perpendi-

cular to the diagonal of the unit cell. The ®rst members are

6mm and m�3m. The third series is that of the symmetry groups

of lattices that are the direct sum of a number of identical

lower-dimensional lattices. An example is related to the group

6mm?6mm, the symmetry group of the sum of two 2D

hexagonal lattices, of order 144. In case the two hexagonal

lattices have the same lattice constant, there is a symmetry

operation in 4D that exchanges the two lattices. The full

symmetry group then is a group of order 288, with subgroup

6mm?6mm of index two. Subgroups in this point-group

system all have a subgroup of index 2 that is the subdirect

product of two subgroups of 6mm. This subgroup is (2+2)-

reducible, and has been assigned a symbol in Report I. In

addition, there is one additional generator, exchanging the

two invariant subspaces.

The hypercubic lattice in 4D has the special property that

there is a centred lattice for which the holohedry is of higher

order than the hypercubic lattice. There is a threefold rotation

permuting the 3 centring axes that belongs to the holohedry of

the centred lattice but not to that of the hypercubic lattice.

This threefold rotation is an additional generator which raises

the order of the holohedry from 384 to 1152. Because the

matrices of the group of order 384 on an orthonormal basis of

the hypercubic lattice are simpler, the latter is chosen as the

conventional lattice.

Proposals for the symbols of all R-irreducible geometric

classes in 4D and for some in 5D and 6D are given in Tables 1

and 2. These are based on the considerations given above. For

an alternative view, cf. Weigel et al. (2001) and, speci®cally for

5D, Veysseyre & Veysseyre (2002) and Veysseyre et al. (2002).

First example. The third group of system 21_1 in Table 1(a)

has order 60. There are 12 group elements that, on the chosen

basis, correspond to orthogonal matrices. These 12 form a

subgroup, generated by

A �
0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0BB@
1CCA; B �

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0BB@
1CCA;

with relations A3 � B2 � �AB�3 � E. They form a 3D tetra-

hedral group 23 in the space perpendicular to the invariant

vector �1; 1; 1; 1�. In addition, the group has a generator

C �
0 0 0 ÿ1

1 0 0 ÿ1

0 1 0 ÿ1

0 0 1 ÿ1

0BB@
1CCA:

This element generates a cyclic subgroup [5]. The two

subgroups generate the full 4D point group with symbol

[5].(23). Because the product of the orders of the two groups

(5 and 12) is equal to the order of the group, the latter does not

have to be given explicitly.

Second example. The second point group in the system

22_2 in Table 1(b) has order 24. There is an R-reducible

subgroup generated by the matrices

0 1 0 0

ÿ1 1 0 0

0 0 1 ÿ1

0 0 1 0

0BB@
1CCA;

1 ÿ1 0 0

0 ÿ1 0 0

0 0 ÿ1 0

0 0 ÿ1 1

0BB@
1CCA;

of order 12. It is the group 6m(6m). In addition, there is a

generator

0 0 0 ÿ1

0 0 ÿ1 0

0 1 0 0

1 0 0 0

0BB@
1CCA:

The last matrix generates a cyclic group of order 4. It is the

group 44. The symbol for the full group then is 6m(6m).44 but,
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Table 2
Some R-irreducible point groups in 2±6 dimensions.

Dim. Order Generators Symbol

2 12 3,m,2 6mm

3 48 �4,3,m m�3m

4 240 m,3,�4,[5] [10].�43m

5 1440 m,3,�4,[5],63,15 63.�5�.�43m

6 10080 m,3,�4,[5],63,[7],14 �7�.63.[5].�43m

4 384 �4,3,2,mx,my,mz,mu 4.3.2.mmmm

5 3840 [5],�4,3,2,mx,my,mz,mu,mv [5].4.3.2.mmmmm

6 46080 63,[5],�4,3,2,mx,my,mz,mu,mv,mw 63.[5].4.3.2.mmmmmm
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Table 3
Centrings in 4D and their symbols.

Index Matrix Points in unit cell BBNWZ Recommended

2 1
2

1 1 1 1

ÿ1 1 1 1

1 ÿ1 1 1

1 1 ÿ1 1

0BB@
1CCA 0 0 0 0

1
2

1
2

1
2

1
2

Z I4

2 1
2

1 1 1 0

ÿ1 1 1 0

1 ÿ1 1 0

0 0 0 2

0BB@
1CCA 0 0 0 0

1
2

1
2

1
2 0

I Ixyz

2 1
2

1 ÿ1 0 0

1 1 0 0

0 0 2 0

0 0 0 2

0BB@
1CCA 0 0 0 0

1
2

1
2 0 0

S(1,2) Ixy

3 1
3

2 1 1 0

ÿ1 1 ÿ1 0

ÿ1 ÿ2 1 0

0 0 0 3

0BB@
1CCA 0 0 0 0

2
3

1
3

1
3 0

1
3

2
3

2
3 0

R(1,2,3) Rxyz

3 1
3

1 1 1 1

ÿ2 1 1 1

1 ÿ2 1 1

1 1 ÿ2 1

0BB@
1CCA 0 0 0 0

1
3

1
3

1
3

1
3

2
3

2
3

2
3

2
3

RR1 R4

4 1
2

1 0 0 1

0 1 1 0

0 ÿ1 1 0

ÿ1 0 0 1

0BB@
1CCA

0 0 0 0
1
2 0 0 1

2

0 1
2

1
2 0

1
2

1
2

1
2

1
2

D(1,4)(2,3) Ixu;yz

4 1
2

0 1 1 0

1 0 1 0

1 1 0 0

0 0 0 2

0BB@
1CCA

0 0 0 0

0 1
2

1
2 0

1
2 0 1

2 0
1
2

1
2 0 0

F(1,2,3) Fxyz

4 1
2

1 ÿ1 1 0

0 0 ÿ1 1

1 1 0 ÿ1

1 1 0 1

0BB@
1CCA

0 0 0 0
1
2

1
2

1
2 0

1
2

1
2 0 1

2

0 0 1
2

1
2

G(3,4) Ixyz;zu

5 1
5

ÿ1 ÿ1 ÿ1 4

ÿ1 ÿ1 4 ÿ1

ÿ1 4 ÿ1 ÿ1

4 ÿ1 ÿ1 ÿ1

0BB@
1CCA

0 0 0 0
1
5

1
5

1
5

1
5

2
5

2
5

2
5

2
5

3
5

3
5

3
5

3
5

4
5

4
5

4
5

4
5

SN inverse Q4

6 1
6

2 ÿ2 1 3

2 4 1 3

0 0 3 ÿ3

0 0 3 3

0BB@
1CCA

0 0 0 0
1
3

2
3

1
6

1
2

2
3

1
3

1
3 0

0 0 1
2

1
2

1
3

2
3

2
3 0

2
3

1
3

5
6

1
2

RS(3,4)(1,2,3) RxyzIzu

8 1
2

0 1 1 0

1 0 1 0

1 1 0 0

ÿ1 ÿ1 ÿ1 1

0BB@
1CCA

0 0 0 0
1
2

1
2 0 0

1
2 0 1

2 0
1
2 0 0 1

2

0 1
2

1
2 0

0 1
2 0 1

2

0 0 1
2

1
2

1
2

1
2

1
2

1
2

U F4

8 1
4

2 0 1 1

0 2 1 ÿ1

0 ÿ2 1 ÿ1

ÿ2 0 1 1

0BB@
1CCA

0 0 0 0
1
2

1
2

1
2 0

0 0 1
2

1
2

1
2

1
2 0 1

2
1
2 0 1

4
1
4

1
2 0 3

4
3
4

0 1
2

3
4

1
4

0 1
2

1
4

3
4

KG(1,2) Ixyz;zuIxu



because the product of the orders of the two subgroups

is 48, the order of the group may be indicated explicitly:

6m(6m).44[24].

5. Bravais classes and centrings

The symbol for a Bravais class is the symbol for the arithmetic

holohedry of the Bravais class (de Wolff et al., 1985, 1989,

1992). This consists of the symbol for the geometric class

followed by a symbol for the centring, the latter being the

basis transformation from a standard basis for the conven-

tional cell to a primitive cell of a lattice from the Bravais class.

Centrings are given by the basis transformation from a

conventional basis for the family to a primitive basis of the

Bravais class. If the basis transformation is S, then the number

of lattice translations in a unit cell of the conventional lattice is

called the index of the centring, which is equal to the deter-

minant of S. Conventionally, the basis transformation is given

by a lower-case letter for 2D and an upper-case letter for 3D.

We also recommend using one or more capital letters in higher

dimensions.

The basis transformation can be speci®ed either by the

matrix S or by the lattice vectors inside a conventional unit

cell. There are four cases that occur similarly for every

dimension. One has index 1 and is indicated by P, another has

index 2 and has, in addition to the origin, also the centre of the

(conventional) unit cell; it is indicated by I. The third has three

lattice translations along the diagonal of the unit cell and has

symbol R, and the fourth has a lattice translation in the middle

of each pair of conventional basis vectors. It has index 2nÿ1 in

nD space and is indicated by F. If necessary to give the

dimension explicitly, it may be added as a subindex: Pn, In, Rn

and Fn. Centrings similar to R have m lattice translations along

the diagonal and index m. We recommend that the centring be

indicated by K for m � 4 and by Q for m � 5, or by Kn and

Qn, respectively.

Centrings of an mD sublattice, such as the C centring in a

3D orthorhombic lattice with centring translation �0; 0; 1
2�, are

given by the same symbol as in lower dimensions but the

centred sublattice must be indicated. We recommend using a

subindex indicating the axes involved (x; y; z; u; v;w; . . .).

Thus the C centring of the orthorhombic 3D lattice is given the

symbol Ixy.

Finally, some centrings may be regarded as the centring of a

centring. The basis transformation S is then given by the

product of two basis transformations S1 and S2. The index of S

is the product of the indices of S1 and S2. There is a centring

with index 16 in 4D, for which the centring matrix can be

viewed as the product of the centring matrix for I with that

for F.

1
2

1 1 1 1

ÿ1 1 1 1

1 ÿ1 1 1

1 1 ÿ1 1

0BBB@
1CCCA 1

2

0 1 1 0

1 0 1 0

1 1 0 0

ÿ1 ÿ1 ÿ1 1

0BBB@
1CCCA

� 1
4

1 1 1 1

1 ÿ1 ÿ1 1

ÿ1 1 ÿ1 1

ÿ1 ÿ1 1 1

0BBB@
1CCCA:

The symbol is then IF or I4F4. The basis vectors �14 ; 1
4 ;

1
4 ;

1
4�,

�14 ; 3
4 ;

3
4 ;

1
4�, �34 ; 1

4 ;
3
4 ;

1
4� and �34 ; 3

4 ;
1
4 ;

1
4� span a lattice with 16 basis

vectors in the conventional unit cell (see Table 3).

Products of sublattice centrings are treated in the same way.

If the centrings have the same symbol, but possibly different

orientations, then the subindices are combined. A centring in

4D with four lattice translations in the conventional unit cell

given by �0; 0; 0; 0�, �12 ; 1
2 ; 0; 0�, �0; 1

2 ;
1
2 ;

1
2� and �12 ; 0; 1

2 ;
1
2� is

indicated by the centring symbol Ixy;yzu. This is, of course, the

same as Ixy;xzu. As an example, all the centring symbols for 4D

lattices are given in Table 3. Recommendations for the nota-

tion of the Bravais classes in 4D, using these centring symbols,

are given in Table 4. Some examples of centring symbols for

higher-dimensional (5D and 6D) spaces are given in Table 5.
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Table 3 (continued)

Index Matrix Points in unit cell BBNWZ Recommended

16 1
4

1 1 1 1

1 ÿ1 ÿ1 1

ÿ1 1 ÿ1 1

ÿ1 ÿ1 1 1

0BB@
1CCA

0 0 0 0
1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

3
4

3
4

3
4

3
4

1
4

1
4

3
4

3
4

3
4

3
4

1
4

1
4

1
4

3
4

1
4

3
4

3
4

1
4

3
4

1
4

3
4

1
4

1
4

3
4

1
4

3
4

3
4

1
4

1
2

1
2 0 0

0 0 1
2

1
2

1
2 0 1

2 0

0 1
2 0 1

2
1
2 0 0 1

2

0 1
2

1
2 0

KU I4F4
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6. Arithmetic crystal classes

Two arithmetic point groups that are geometrically equivalent

can be obtained from each other by a conjugation with a

rational matrix. In other words, they are related by a centring

matrix. As in the case for arithmetic crystal classes in one, two

and three dimensions, the symbol for an arithmetic crystal

class is the geometric crystal class symbol followed by a

symbol for the centring of the lattice. However, a Bravais

group may contain several subgroups that are geometrically

equivalent but not arithmetically. A well known example in

two dimensions is given by the pair of arithmetic groups 3m1p

and 31mp of order 6. The difference between the two groups is

the orientation of the mirror planes (m). In the ®rst case, these

are perpendicular to the crystal axes, in the second these are

along the crystal axes. There are hence two ways to indicate

point groups in the same geometric crystal class that are

arithmetically different: either by the centring symbol or by

indicating the orientation in the Bravais group.

Both approaches are used in 2D and 3D. In 3D, the point

groups in the arithmetic crystal classes 3m1P, 31mP and 3mR

are geometrically equivalent. We recommend using the same

system in higher dimensions, with the introduction of symbols

for the centrings to distinguish between Bravais classes. The

same symbols are used for the arithmetic crystal classes. In

principle, there are more symbols than strictly needed for the

Bravais classes. In 3D, the 14 Bravais classes would have the

proposed general notation symbols �1P3, 2=mP3, 2=mIxz,

mmmP3, mmmI3, mmmF3, mmmIxy, �3mR3, 6=mmmP3,

4=mmmP3, 4=mmmI3, m�3mP3, m�3mI3, m�3mF3. Symbols such

as Iyz are available for distinguishing between arithmetic

crystal classes.

Different orientations of subgroups of the Bravais groups

are indicated by the invariant spaces of the generators. This

may be achieved by giving the axes in the invariant space of

the element as superscripts.

A special case occurs if a generator of an R-reducible point

group is the sum of mirrors in the various invariant subspaces.

If the group is Z-reducible with components of dimension less

than 4, the orientation of the mirrors with respect to the

crystal axes may be given. If the mirror plane is perpendicular

to a crystal axis, the mirror is indicated by a dot ( _m), otherwise

by a double dot ( �m�. This corresponds to the notation m1 and

1m, respectively. The positional notation cannot be used here

Table 4
The 64 Bravais classes in 4D.

System Holohedral point group Centrings for Bravais classes

1_1 14 P4

2_1 �1?m P4, I4

3_1 2?2 P4, I4, Ixz;yu

4_1 2?mm P4, Izu, Ixyz, I4, Ixz;yu, Fyzu

5_1 4(4) P4

6_1 6(6) P4

7_1 222�14 F4I4

7_2 mmmm P4, Ixy, Ixyz, I4, Ixy;uz, Fxyz, Ixyz;zu, F4

8_1 4mm?2 P4, I4

9_1 �3m(m1) Rxyz

9_2 6mm?2 P4

10_1 4m(4m) P4, Ixyz, Ixu;yz

11_1 6m(6m) P4, R4

12_1 �42m�14 Ixyz;zuIxu

12_2 4mm?mm P4, Izu, Ixyz, I4, Ixyz;zu

13_1 �3m?m Rxyz, RxyzIzu

13_2 6mm?mm P4, Izu

14_1 8m(83m) P4

15_1 10m(103m) P4

16_1 12m(125m) P4

17_1 4m11(41mm) Ixu;yz

17_2 4mm?4mm P4, I4

18_1 6mm?4mm P4

19_1 m�3m(mm1) I4F4

19_2 m�3m?m P4, Ixyz, I4, Fxyz, F4

20_1 6m1(3m2) Iyz;xyu

20_2 6m11(613m) R4

20_3 6mm?6mm P4

21_1 [10].�43m P4, Q4

22_1 6m11(613m).2 R4

22_2 6mm?6mm.2 P4

23_1 [8].m�3m P4

23_2 [12].2.m�3m I4

Table 5
Examples of centrings in 5D and 6D.

Symbol Dimension Index Matrix

I5 5 2 1
2

1 1 1 1 1

ÿ1 1 1 1 1

1 ÿ1 1 1 1

1 1 ÿ1 1 1

1 1 1 ÿ1 1

0BBBB@
1CCCCA

I6 6 2 1
2

1 1 1 1 1 1

ÿ1 1 1 1 1 1

1 ÿ1 1 1 1 1

1 1 ÿ1 1 1 1

1 1 1 ÿ1 1 1

1 1 1 1 ÿ1 1

0BBBBBB@

1CCCCCCA

F5 5 16 1
2

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 0 0 0 ÿ1

0BBBB@
1CCCCA

F6 6 32 1
2

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

ÿ1 0 0 0 0 1

0BBBBBB@

1CCCCCCA

Ixy e.g. 4 2 1
2

1 ÿ1 0 0

1 1 0 0

0 0 2 0

0 0 0 2

0BB@
1CCA

Ixyzu e.g. 5 2 1
2

1 1 1 1 0

ÿ1 1 1 1 0

1 ÿ1 1 1 0

1 1 ÿ1 1 0

0 0 0 0 2

0BBBB@
1CCCCA

Ixy;zu;vw e.g. 6 8 1
2

1 ÿ1 0 0 0 0

1 1 0 0 0 0

0 0 1 ÿ1 0 0

0 0 1 1 0 0

0 0 0 0 1 ÿ1

0 0 0 0 1 1

0BBBBBB@

1CCCCCCA



because combinations of a mirror of the ®rst type in one

subspace can be combined with one of the other type in

another subspace. If the group is Z-irreducible, but R-redu-

cible, the same notation can be used with respect to the

projection of the crystal axes on the invariant subspace. The

case of twofold rotations instead of mirrors can be treated in

the same way.

Example 1. The ®ve arithmetic crystal classes in the

geometric crystal class m�3m?m are distinguished by the

centrings. They are denoted as m�3m?mP4, m�3m?mI4,

m�3m?mIxyz, m�3m?mFxyz and m�3m?mF4.

Example 2. In the geometric class 3m(3m), there are three

arithmetic crystal classes. If the elements 33 and 2(� mm) are

given by

A �

0 ÿ1 0 0

1 ÿ1 0 0

0 0 0 ÿ1

0 0 1 ÿ1

0BBB@
1CCCA;

B2 �

1 ÿ1 0 0

0 ÿ1 0 0

0 0 1 ÿ1

0 0 0 ÿ1

0BBB@
1CCCA;

B1 �

ÿ1 1 0 0

0 1 0 0

0 0 ÿ1 1

0 0 0 1

0BBB@
1CCCA;

B3 �

ÿ1 1 0 0

0 1 0 0

0 0 1 ÿ1

0 0 0 ÿ1

0BBB@
1CCCA;

then three point groups, one from each class, are generated by

A, B1, or by A, B2, or by A, B3. The centring is primitive in all

cases. Therefore, the symbols are, respectively, 3 _m�3 _m�P4,

3 �m�3 �m�P4, and 3 _m�3 �m�P4. Correspondingly, the two arith-

metic classes in the geometric crystal class 6m(6m) are

6m(6m)P4 and 6 _m�6 �m�P4.

Example 3. The 4D geometric class �42m��14 has 11 arith-

metic classes. These correspond to the centrings P4, I4, Izu, Ixyu,

Ixyz;xyu and N4. For each of these centrings, except the last,

there are two different orientations of the point group with

respect to the crystal axes. One is generated by

A �

0 1 0 0

ÿ1 0 0 0

0 0 ÿ1 0

0 0 0 1

0BBB@
1CCCA; B �

1 0 0 0

0 1 0 0

0 0 ÿ1 0

0 0 0 ÿ1

0BBB@
1CCCA;

C �

ÿ1 0 0 0

0 1 0 0

0 0 ÿ1 0

0 0 0 1

0BBB@
1CCCA;

and the other by A, B and

D �
0 1 0 0

1 0 0 0

0 0 ÿ1 0

0 0 0 1

0BB@
1CCA:

The two arithmetic classes with P-centring are �42m��14P4 and
�4m2��14P4. The other arithmetic classes are similar, with other

centrings, except the N-centring. In the latter case, only the

second orientation occurs.

Example 4. The geometric crystal class �5�:2 � 5m�52m�
contains two arithmetic classes. A representative is generated

by

A �
0 0 0 ÿ1

1 0 0 ÿ1

0 1 0 ÿ1

0 0 1 ÿ1

0BB@
1CCA; B �

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0BB@
1CCA;

and another by A and C � ÿB. The groups are Z-irreducible,

but R-reducible, and arithmetically non-equivalent. B and C

are composed of two mirrors, one in each R-irreducible

subspace. The mirrors in both subspaces go either through the

projection of basis vectors of the lattice basis or they are both

perpendicular. Therefore, the two arithmetic groups can be

given the symbols 51m(521m) and 5m1(52m1), or 5 _m(52 _m) and

5 �m(52 �m).

Example 5. All arithmetic crystal classes for the two 4D

families 6mm?2 and mmmm are given in Table 6 with their

recommended symbols.
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Table 6
Examples of arithmetic crystal classes in four dimensions.

(a) The arithmetic crystal classes of family 6mm?2.

Geometric
class Order Arithmetic classes

3 3 3P4, 3R4

3m 6 3m1P4, 31mP4, 31mR4

�3(m) 6 �3(m)P4, �3(m)R4

32(1m) 6 312(11m)P4, 312(11m)R4, 321(1m1)P4

�3m(m1) 12 �3m1(m11)P4, �31m(m11)P4, �31m(m11)R4

6 6 6P4

3?2 6 3?2P4

6mm 12 6mmP4

6?2 12 6?2P4

3m?2 12 3m1?2P4, 31m?2P4

6m(12) 12 6m(12)P4

6mm?2 24 6mm?2P4

(b) The arithmetic crystal classes of family mmmm.

Geometric
class Order Arithmetic classes

222 4 222P4, 222I4, 222F4, 222I4F4, 222Izu, 222Iyz,

222Ixyu, 222Ixzu, 222Ixz;yu, 222Ixyz;zu, 222Ixyu;yz,

222Fxyz, 222Fxyu

222�14 8 222�14P4, 222�14I4, 222�14F4, 222�14I4F4,

222�14Izu, 222�14Ixyu, 222�14Ixz;yu, 222�14Ixyz;zu,

222�14Fxyz

mmm 8 mmmP4, mmmI4, mmmF4, mmmIzu, mmmIyz,

mmmIxyu, mmmIxzu, mmmIxz;yu, mmmIxyz;zu,

mmmIxyu;yz, mmmFxyz, mmmFxyu

222?m 8 222?mP4, 222?mI4, 222?mF4, 222?mIzu,

222?mIyu, 222?mIxyu, 222?mIxyz, 222?mIxz;yu

222?mIxyz;zu, 222?mIxyz;yu, 222?mFxyz, 222?mIxzu

mmmm 16 mmmmP4, mmmmI4, mmmmF4, mmmmIzu,

mmmmIxyu, mmmmIxz;yu, mmmmIxyz;zu, mmmmFxyz
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7. Space groups

Space-group symbols are conveniently chosen as the symbols

for the arithmetic crystal class corresponding to the space

group, with additional information on the translation parts of

the space-group elements. The intrinsic part of the corre-

sponding translation in the space-group element is given in the

symbol for every generator of the point group. This is the

translation component that is invariant under origin shifts. In

the symbols used up to the 3D case, a subindex represents the

intrinsic part of the translation for a screw axis (e.g. P21), and

for a glide re¯ection (e.g. P2=a) the mirror symbol `m' is

replaced by a letter that corresponds to the translation. With

the de Wolff et al. (1992) nomenclature, the centring symbol

for the arithmetic crystal class is placed at the beginning of the

space-group symbol.

The same scheme can be adopted in higher dimensions.

Each character in the symbol for a point group stands for a

generator of the point group or a component of a generator.

The latter occurs if an orthogonal transformation is indicated

by more than one digit, as e.g. the 4D rotation 43 of order 12,

or the element 6(6) in a 4D reducible point group. The

intrinsic translations only appear in invariant subspaces.

Therefore, the examples given [43 and 6(6)] hence have

intrinsic translations only in spaces of dimension higher than 4.

We recommend appending an index to the symbol to indicate

the intrinsic translation. The position of the index is:

± for series of subsequent characters indicating an orthog-

onal transformation (such as 3 or 43), directly after the last

character;

± for characters separated by paren-

theses, directly after the last character of

the corresponding component, followed

by an eventual component in other

directions.

The intrinsic translation of a space-group

element is always a rational fraction of a

lattice translation in the invariant subspace.

It can be given by that fraction and the

lattice translation. Suppose the fraction is

p=q and the order of the orthogonal trans-

formation is n. Then np=q corresponds to a

lattice translation. We take the order of the

element (n) as the denominator. With

respect to a primitive basis, np=q would be

an integer, but, because translations are

given with respect to the conventional basis,

np=q still may be a fraction. This fraction is

placed before the lattice translation vector

indicated by xe1 � ye2 � ze3 � . . ., where ei

is the ith basis vector.

It is suf®cient to indicate the translation

part for a set of generators because the

other space-group elements including their

translation parts are the result of multi-

plications. However, the intrinsic parts are

not always suf®cient. There are non-

symmorphic space groups for which a set of generators may be

chosen without an intrinsic translation part. An example is the

3D group I212121. For every element of the point group, the

associated translation in the space-group element may be

changed by adding a lattice translation or by a change of

origin. In the case of I212121, there is an origin for which the

rotation along the z axis has a translation (1
2 0 1

2) and the space-

group element is a screw rotation. However, because (1
2

1
2

1
2) is a

lattice translation, the translation in the screw rotation may be

changed to (0 1
2 0), which may be changed to zero by an origin

shift. This holds for all three twofold rotations. However, the

non-primitive translations cannot simultaneously be elimi-

nated. The choice of generators of the point group without

intrinsic translations would lead to the symbol I222, which is

already the symbol for the symmorphic group. Therefore, the

symbol I212121 is used. We recommend choosing in similar

situations translation components for which the intrinsic part

is non-zero.

A similar situation occurs for the group P5�3m�52 �3m�.
Strictly speaking, the elements 5(52) = [5] and �3��3� � 662

generate the point group. However, this choice leads to a

notational problem. There is a non-symmorphic space group

with generators f�5�j�0 1
2

1
2 000�g and f�3��3�j�00 1

2 0 1
2 0�g. Both

translation parts may be eliminated by an origin shift.

However, their product m(m) has a translation part (00 1
2

1
2 00),

which is intrinsic. Therefore, it is advisable to use the symbol

P5�3mzu�52 �3m�. The non-symmorphic character can only be

made evident by choosing m(m) = 2 as a (super¯uous)

generator of the point group. We recommend using more

generators for the point group than strictly necessary, if that is

Table 7
Examples of 4D space groups.

Arithmetic
crystal class Symbol Generators

[8].2.2P P[8].2.2 �z; u;ÿy; x�; �x; y;ÿz;ÿu�; �x;ÿy; u; z�
P[8].2.2x �z; u;ÿy; x� 1

2�; �x; y;ÿz� 1
2 ;ÿu� 1

2�; �x� 1
2 ;ÿy; u; z�

P[8].2xy.2 �z; u;ÿy; x�; �x� 1
2 ; y� 1

2 ;ÿz� 1
2 ;ÿu� 1

2�; �x;ÿy; u; z�
[8].2P P[8].2 �ÿu; x; y; z�; �ÿx; u; z; y�

P[8].2z �ÿu; x; y; z� 1
2�; �ÿx; u; z� 1

2 ; y�
4m?2P P4m?2 �ÿy; x; z; u�; �ÿx; y; z; u�; �x; y;ÿz;ÿu�

P42umyu?2xy �ÿy� 1
2 ; x; z; u� 1

2�; �ÿx; y� 1
2 ; z; u� 1

2�; �x� 1
2 ; y� 1

2 ;ÿz;ÿu�
P4zmyu?2xy �ÿy� 1

2 ; x; z� 1
2 ; u�; �ÿx; y� 1

2 ; z; u� 1
2�; �x� 1

2 ; y� 1
2 ;ÿz;ÿu�

P4m?2xy �ÿy; x; z; u�; �ÿx; y; z; u�; �x� 1
2 ; y� 1

2 ;ÿz;ÿu�
P4my?2 �ÿy� 1

2 ; x; z; u�; �ÿx; y� 1
2 ; z; u�; �x; y;ÿz;ÿu�

P42um?2 �ÿy; x; z; u� 1
2�; �ÿx; y; z; u�; �x; y;ÿz;ÿu�

P4my?2xy �ÿy� 1
2 ; x; z; u�; �ÿx; y� 1

2 ; z; u�; �x� 1
2 ; y� 1

2 ;ÿz;ÿu�
P42um?2xy �ÿy; x; z; u� 1

2�; �ÿx; y; z; u�; �x� 1
2 ; y� 1

2 ;ÿz;ÿu�
P42umz?2xy �ÿy; x; z; u� 1

2�; �ÿx; y; z� 1
2 ; u�; �x� 1

2 ; y� 1
2 ;ÿz;ÿu�

P4mu?2 �ÿy; x; z; u�; �ÿx; y; z; u� 1
2�; �x; y;ÿz;ÿu�

P42umy?2 �ÿy� 1
2 ; x; z; u� 1

2�; �ÿx; y� 1
2 ; z; u�; �x; y;ÿz;ÿu�

P42umu?2 �ÿy; x; z; u� 1
2�; �ÿx; y; z; u� 1

2�; �x; y;ÿz;ÿu�
P4mu?2xy �ÿy; x; z; u�; �ÿx; y; z; u� 1

2�; �x� 1
2 ; y� 1

2 ;ÿz;ÿu�
P42umy?2xy �ÿy� 1

2 ; x; z; u� 1
2�; �ÿx; y� 1

2 ; z; u�; �x� 1
2 ; y� 1

2 ;ÿz;ÿu�
P42umu?2xy �ÿy; x; z; u� 1

2�; �ÿx; y; z; u� 1
2�; �x� 1

2 ; y� 1
2 ;ÿz;ÿu�

P42umyz?2 �ÿy� 1
2 ; x; z; u� 1

2�; �ÿx; y� 1
2 ; z� 1

2 ; u�; �x; y;ÿz;ÿu�
P4myu?2 �ÿy� 1

2 ; x; z; u�; �ÿx; y� 1
2 ; z; u� 1

2�; �x; y;ÿz;ÿu�
P42umyu?2 �ÿy� 1

2 ; x; z; u� 1
2�; �ÿx; y� 1

2 ; z; u� 1
2�; �x; y;ÿz;ÿu�

P4myu?2xy �ÿy� 1
2 ; x; z; u�; �ÿx; y� 1

2 ; z; u� 1
2�; �x� 1

2 ; y� 1
2 ;ÿz;ÿu�

P42umz?2 �ÿy; x; z; u� 1
2�; �ÿx; y; z� 1

2 ; u�; �x; y;ÿz;ÿu�
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Table 8
Space groups in ®ve dimensions: system 10m�103m�?m.

Generating matrices for the 5D groups below:

A �

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0BBBB@
1CCCCA; B �

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0BBBB@
1CCCCA; F �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ÿ1

0BBBB@
1CCCCA; C �

0 1 ÿ1 0 0

0 1 0 ÿ1 0

0 1 0 0 0

ÿ1 1 0 0 0

0 0 0 0 1

0BBBB@
1CCCCA;

D �

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0BBBB@
1CCCCA; G �

ÿ1 0 0 0 0

ÿ1 0 0 1 0

ÿ1 0 1 0 0

ÿ1 1 0 0 0

0 0 0 0 1

0BBBB@
1CCCCA; A0 �

ÿ1 ÿ1 ÿ1 ÿ1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0BBBB@
1CCCCA I is 15:

(a) Examples of space groups in the ®ve- and tenfold system in 5D: Q-centring.

Arithmetic crystal class Generators Translations Space-group symbol Alternative

5(52)Q A 00000 Q5(52) Q5(52)
5m(52m)Q A, B 00000 00000 Q5m(52m) Q5m(52m)

00000 00001
2

Q5mv(52m) Q5c(52m)
5m(52m)(1m)Q A, ÿB 00000 00000 Q5m(52m) (1m) Q52(52m)
10(103)(m)Q ÿA 00000 Q10(103)(m) Q�5(103)
10m(103m)(m)Q ÿA, B 00000 00000 Q10m(103m)(m) Q�5m(103m)

00000 00001
2

Q10mv(103m)(m) Q�5c(103m)

(b) Examples of space groups in the ®ve- and tenfold system in 5D: P-centring.

Arithmetic crystal class Generators Translations Space-group symbol Alternative

5(52)P A0 00000 P5(52) P5(52)
00001

5
P5v(52) P51(52)

5m(52m)P A0, D 00000 00000 P5m(52m) P5m1(52m1)
00000 00001

2
P5mv(52m) P5c1(52m1)

5 _m(52m)P A0, G 00000 00000 P5 _m(52m) P51m(521m)
00000 00001

2 P5 _mv(52m) P51c(521m)
5m(52m)(1m)P A0, ÿD 00000 00000 P5m(52m)(1m) P521(52m1)

00001
5 00000 P5vm(52m)(1m) P5121(52m1)

5 _m(52m)(1m)P A0, ÿG 00000 00000 P5 _m(52m)(1m) P512(521m)
00001

5 00000 P5v _m(52m)(1m) P5112(521m)
10(103)(m)P ÿA0 00000 P10(103)(m) P�5(103)
10m(103m)(m1)P ÿA0, D 00000 00000 P10m(103m)(m1) P�5m1(103m1)

00000 00001
2

P10mv(103m)(m1) P�5c1(103m1)
10 _m(103m)(m1)P ÿA0, D 00000 00000 P10 _m(103m)(m1) P�521(103m1)

00000 00001
2 P10 _mv(103m)(m1) P�5211(103m1)

10(103)P C 00000 P10(103) P10(103)
0000 1

10
P10v(103) P101(103)

00001
5

P102v(103) P102(103)

00001
2

P105v(103) P105(103)

5(52)(m)P ÿC 00000 P5(52)(m) P10(52)
10(103)?m C, F 00000 00000 P10(103)?m P10=m(103)

00001
2 00000 P105v(103)?m P105=m(103)

10m(103m)P C, D 00000 00000 P10m(103m) P10mm(103mm)
00000 00001

2
P10mv(103m) P10cc(103mm)

00001
2 00000 P105vm(103m) P105mc(103mm)

00001
2 00001

2
P105vmv(103m) P105cm(103mm)

10m(103m)(m)P C, ÿB 00000 00000 P10m(103m)(m) P10 22(103mm)

0000 1
10 00000 P10vm(103m)(m) P10122(103mm)

00001
5 00000 P102vm(103m)(m) P10222(103mm)

00001
2 00000 P105em(103m)(m) P10522(103mm)

5m(52m)(m1)P ÿC, B 00000 00000 P5m(52m)(m1) P10m1(52m1)
00001

2 00000 P5vm(52m)(m1) P10c1(52m1)
5 _m(52m)(m1)P ÿC, B 00000 00000 P5 _m(52m)(m1) P10 1m(521m)

00001
2 00000 P5v _m(52m)(m1) P10 1c(521m)

10m(103m)?mP C, D, I 00000 00000 00000 P10m(103m)?m P10=mmm(1031mm)
00001

2 0000 00000 P105vm(103m)?m P105=mmc(1031mm)
00000 00001

2 00000 P10mv(103m)?m P10=mcm(1031mm)
00001

2 00001
2 00000 P10vmv(103m)?m P105=mcm(1031mm)
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a way to indicate the character of the non-symmorphic space

group.

1: The space group with generators

ÿ1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0BBB@
1CCCA

0

0
1
2

0

0BBB@
1CCCA

���������

0BBB@
1CCCA;

1 0 0 0

0 ÿ1 0 0

0 0 1 0

0 0 0 1

0BBB@
1CCCA

0

0

0
1
2

0BBB@
1CCCA

���������

0BBB@
1CCCA;

1 0 0 0

0 1 0 0

0 0 ÿ1 0

0 0 0 ÿ1

0BBB@
1CCCA

1
2

1
2

0

0

0BBB@
1CCCA

���������

0BBB@
1CCCA

(and the lattice translations) has arithmetic point group

mm?2P and symbol Pmzmu?2xy.

2. The space group with the lattice translations and

0 ÿ1 0 0 0

1 0 0 0 0

0 0 0 ÿ1 0

0 0 1 0 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA
0

0

0

0
1
2

0BBBBBB@

1CCCCCCA

������������

0BBBBBB@

1CCCCCCA;
ÿ1 0 0 0 0

0 1 0 0 0

0 0 ÿ1 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA
0

0

0

0
1
2

0BBBBBB@

1CCCCCCA

������������

0BBBBBB@

1CCCCCCA:

as generators has arithmetic point group 4m(4m)P. Because

the order of the ®rst rotation is four, the fraction np=q � 2 and

four times the translation part is 2e5. Although the translation

part of the second generator is the same, the order of the

second rotation is two and np=q � 1. Therefore, the symbol is

P42vmv�4m�.
Lists of space groups may be found in Brown et al. (1978)

for 4D (a complete list), in Martinais (1987) for 6D and in

Janssen (1988) for 5D and 6D.

This is not the place to give full lists of the recommended

symbols for all space groups in dimensions higher than three.

As examples, all space groups are given for a selected number

of arithmetic crystal classes in 4D (Table 7), 5D (Table 8) and

6D (Tables 9 and 10). Generators for the space groups are

given either by generating matrices for the arithmetic point

group together with the associated translations (Table 8) or by

the action of the generators on a point (x; y; z; u; v) in 5D or

(x; y; z; u; v;w) in 6D (Tables 7, 9 and 10). For example, one

generator of the space group P5x32(5232) can be written as

�x� 1
5 ; z; u� 1

5 ; v;w; yÿ 1
5�

or as A, 1
5 0 1

5 00ÿ1
5 with

A �

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0BBBBBB@

1CCCCCCA:

8. Symmetries of aperiodic crystals

Higher-dimensional crystallographic symmetry groups have

been adopted in specifying the symmetry of quasiperiodic

crystals, i.e. the aperiodic crystals for which the diffraction

spots can be labelled by a ®nite set of integer indices. There

are at least three different, but partly overlapping, classes

among these aperiodic crystals: the incommensurate displa-

cively/occupationally modulated phases, the incommensurate

composites and the quasicrystals.

The symmetry groups of these structures are (3+d)-

dimensional space groups, called superspace groups. These are

space groups in a space that is the sum of the 3D physical

space and a dD internal or perpendicular space. The dimen-

sion d is determined by the number n � 3� d of basis vectors

of the Fourier module of the structure. This is the set of

reciprocal-lattice vectors spanned with integer coef®cients by

the positions of the diffraction spots of the aperiodic crystal.

The point groups of these superspace groups are R-redu-

cible in 3D and dD components, both possibly R-reducible

themselves. Af®ne conjugation or isomorphism may be used

as coarsest equivalence relation of superspace groups. For

modulated structures, this relation may be re®ned. For these

structures, there is a basis such that the matrices of the point

group belong to the group GL�3; d;Z�, the subgroup of the

general group GL�n;Z� with matrices of the form

A v

0 B

� �
;

where A is a 3� 3, v a d� 3 and B a d� d matrix. Two

superspace groups for modulated structures are equivalent if

they are conjugate subgroups in the subgroup of the af®ne

group that is the semi-direct product of the translation group

and GL�n; d;R�.
The superspace groups form a subset of all the nD space

groups, but two non-equivalent superspace groups under this

equivalence relation may still be isomorphic, and thus

equivalent as nD space groups. The (3+1)D superspace groups

Table 9
Space groups in six dimensions; space groups for the arithmetic class
m�3m�m�3m�P6.

Generators Symbol Alternative

�ÿy; x; z;ÿv; u;w) Pm�3m(m�3m) P4(4).662.2
�ÿy;ÿz;ÿx;ÿv;ÿw;ÿu)
�ÿy; x� 1

2 ; z� 1
2 ;ÿv� 1

2 ; u;w) Pn�3n(n�3n) P4z(4w).662.2
�ÿy;ÿz;ÿx;ÿv;ÿw;ÿu)
�ÿy; x; z;ÿv� 1

2 ; u;w) Pm�3m(n�3n) P4(4w).662.2
�ÿy;ÿz;ÿx;ÿv;ÿw;ÿu)
�ÿy; x; z;ÿv; u� 1

2 ;w� 1
2) Pm�3m(n�3m) P4(4).662.2u

�ÿy;ÿz;ÿx;ÿv;ÿw;ÿu)
�ÿy; x; z;ÿv� 1

2 ; u� 1
2 ;w� 1

2) Pm�3m(m�3n) P4(4w).662.2u

�ÿy;ÿz;ÿx;ÿv;ÿw;ÿu)



for modulated crystals are given in Janssen, Janner et al.

(1999). In Table 11, the space-group symbols are given for the

symmorphic superspace groups corresponding to the Bravais

groups of the (3+1)D space. Superspace groups for 3+d

dimensions (d � 1; 2; 3) can be found on the internet at the

web site http://quasi.nims.go.jp/yamamoto/

index.html. The Bravais classes for modu-

lated structures in 3+d dimensions are given

in Janner et al. (1983).

A brief introduction to the notation for

superspace groups follows. The components

of point-group elements and translations in

physical space form a 3D space group, with

symbol S. In reciprocal space, the diffraction

spots can be distinguished as main re¯ections

and satellites. A basis set of satellite vectors

may be obtained from a subset fq1; . . . ; qsg
by the action of the point group. Finally, each

point-group element present in the symbol S

may have translation components in the

internal (or perpendicular) space symbolized

by alpha-numerical characters a. The symbol

for the superspace group then is

S(fq1; . . . ; qsg�a. For more details, see IT Vol.

C (Janssen, Janner et al., 1999). An example

of such a symbol is Pcmn�00�1s1, the symbol

for a (3+1)D superspace group with compo-

nent Pcmn in physical space and satellites

c�. The mirror m in Pcmn accompanies an

internal translation 1=2d given by the symbol

`s'. The glide planes `c' and `n' do not

have an associated internal translation. This

is given by `1'. Generators for this space-group transform

(x; y; z; u� into (ÿx� 1
2 ; y; z� 1

2 ; u), (x;ÿy� 1
2 ; z; u� 1

2) and

(x� 1
2 ; y� 1

2 ;ÿz� 1
2 ;ÿu). This group would be denoted in

the recommended notation for nD as mzmu?2P.

For all quasiperiodic crystals, the nD point group is an

R-reducible group with an invariant subspace that has the

dimension of the physical space. However, the equivalence of

superspace groups may depend on the type of quasi-periodic

crystal. Conjugation in the semi-direct product of T(n) and

GL�n; d;R� has been adopted as the equivalence relation for

displacively modulated crystals. In the case of composites and

quasicrystals, the coarser equivalence of the conjugation in

E(n) is used conventionally. In each case, it is evident from the

notation that the point group is R-reducible. This notation

differs sometimes from that recommended in the present

Report for nD space groups. A number of examples are given

in Table 12 of superspace groups that are non-equivalent as

superspace groups but equivalent as space groups, together

with the recommended nD notation.

9. Conclusions and recommendations

Symbols and notation for R-irreducible geometric crystal

classes, for arithmetic crystal classes, for Bravais classes and

for space groups are discussed in xx2±7, the relation between

nD space groups and the symmetry groups for aperiodic

crystals in x8. The conclusions can be summarized in the

following recommendations.

(I) R-irreducible geometric crystal classes receive a symbol

that is composed of symbols for generating subgroups.
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Table 10
The space groups for the system 5�3m�52 �3m�.
Generators Centring Symbol

(x; z; u; v;w; y) P6 P532(5232)
(w; x; v;ÿz;ÿu; y)
(x� 1=5; z; u� 1=5; v;w; yÿ 1=5) P6 P5x32(5232)
(w; x; v;ÿz;ÿu; y)
(x; z; u; v;w; y) I6 I532(5232)
(w; x; v;ÿz;ÿu; y)
(x� 1=5; z� 1=5; uÿ 1=5; v� 2=5;wÿ 1=5; yÿ 1=5) I6 I5x32(5232)
(w; x; v;ÿz;ÿu; y)
(x; z; u; v;w; y) F6 F532(5232)
(w; x; v;ÿz;ÿu; y)
(xÿ 3=10; z� 1=10; u� 1=5; v;wÿ 1=5; yÿ 1=5) F6 F5x32(5232)
(w; x; v;ÿz;ÿu; y)
(x; z; u; v;w; y) P6 P5�3m(52 �3m)
(w; x; v;ÿz;ÿu; y)
(ÿx;ÿy;ÿz;ÿu;ÿv;ÿw)
(x; z� 1=2; u� 1=2; v� 1=2;w� 1=2; y) P6 P5�3mzu(52 �3m)
(w; x; v;ÿz;ÿu; y)
(ÿx;ÿy;ÿz;ÿu;ÿv;ÿw)
(x; z; u; v;w; y) I6 I5�3m(52 �3m)
(w; x; v;ÿz;ÿu; y)
(ÿx;ÿy;ÿz;ÿu;ÿv;ÿw)
(x; z; u; v;w; y) F6 F5�3m(52 �3m)
(w; x; v;ÿz;ÿu; y)
(ÿx;ÿy;ÿz;ÿu;ÿv;ÿw)
(x; z� 1=4; u; v;w� 1=4; y� 1=2) F6 F5�3mz=2u=2(52 �3m)
(w; x; v;ÿz;ÿu; y)
(ÿx;ÿy;ÿz;ÿu;ÿv;ÿw)

Table 11
Space-group symbols for the superspace groups for modulated crystals in
(3+1)D for the symmorphic groups of the Bravais groups.

Superspace symbol Space-group symbol Equivalent symbol

P�1���) P414

P2=m(��0) P4
�1?m

P2=m(�� 1
2) Izu

�1?m
B2=m(��0) Ixz

�1?m Izu
�1?m

P2=m(00) P42?2
P2=m(1

2 0) Ixu2?2
B2=m(00) Ixz2?2 Ixu2?2
B2=m�0 1

2 � Ixz;yu2?2
Pmmm�00� P4mm?2
Pmmm(0 1

2 ) Iyumm?2 Iyzmm?2
Pmmm(1

2
1
2 ) Fxyumm?2 Fxyzmm?2

Immm(00) Ixyzmm?2
Cmmm(00) Ixymm?2
Cmmm(10) Ixyumm?2 Ixyzmm?2
Ammm(00) Iyzmm?2
Ammm(1

2 0) Iyz;xumm?2
Fmmm(00) Fxyzmm?2
Fmmm(10) Iyz;xyumm?2 Iyz;xumm?2
P4=mmm�00� P44mm?2
P4=mmm(1

2
1
2 ) Ixyu4mm?2 Ixyz4mm?2

I4=mmm�00� Ixyz4mm?2
R�3m�00� Rxyz

�3m�m1�
P�31m�13 1

3 � Ixyu4mm?2 Ixyz4mm?2
P6=mmm�00� P46mm?m
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(a) The full point group is the product of the subgroups. A

direct product is given by `�', a general product by a dot `.'.

(b) The symbols for the subgroups are those of a generator

for a cyclic group, the conventional symbols in 2D and 3D, and

the symbols given in Report I.

(c) When the symbol of a subgroup is identical to that of an

orthogonal transformation but the point group is not the

corresponding cyclic group, then the symbol is placed in

parentheses.

(d) By preference, the subgroups are chosen such that the

product of their orders is the order of the point group;

otherwise, the order is indicated by a subindex between

brackets at the end.

(II) Bravais classes are indicated by the symbol of the

geometric crystal class of the holohedry followed by a symbol

for the centring.

(a) Symbols for nD P-, I-, F- and R-centrings are Pn, In, Fn

and Rn, respectively.

(b) I, F and R centrings of sublattices are given by the same

letters, but with the axes of the sublattice involved as a

subindex.

(c) When I, F or R centrings occur in more than one

sublattice, the various sublattices are indicated by the corre-

sponding sets of axes, separated by a comma.

(d) When the centring can be considered as the centring of a

centred lattice, it is given as a series of centring symbols.

(e) Symbols for 4D are given in Table 4.

(III) The symbol for an arithmetic class is the symbol for the

geometric class followed by the centring symbol.

(a) When the orientation of the point group with respect to

the centred basis is relevant, the orientation of the centring is

explicitly given.

(b) Different orientations of the point group with respect to

the lattice are given by indicating the invariant spaces for

those group operators for which the orientation matters as a

superscript for the corresponding symbol.

(c) Mirror operations in an invariant space are given by _m
when the inversion operation is along the projection of a

lattice basis vector, by �m when it is perpendicular; for 3D

components, N _m is conventionally denoted as Nm1 and N �m
by N1m.

(IV) A space group (type) is given by a centring symbol, the

symbol for the arithmetic crystal class (but with the centring

symbol removed) and by an indication for the intrinsic part of

the translation parts of the generators corresponding to the

components of the symbol.

(a) The intrinsic translation is given as a subindex at the

corresponding symbol for the point-group generator.

(b) The translation is given with respect to a conventional

basis.

(c) When N is the order of the orthogonal part, the trans-

lations are given as sums of 1=N of the basis vectors; the latter

are indicated by x; y; z; u; v;w; . . ..
(d) To the symbol for the geometrical crystal class are added

symbols for new generators if the intrinsic parts associated

with the original generators are zero or do not give enough

information about the space-group type; for these additional

generators, elements are chosen with non-zero intrinsic

translation.

(e) If necessary, to avoid ambiguity the translation parts of

the generators are chosen in such a way that the intrinsic parts

are non-zero; this may be done by adding lattice translations

of the centring type.

(V) Superspace-group symbols [IT Vol. C (Janssen, Janner

et al., 1999)] may be used for the symmetry description of

incommensurate modulated structures. The full n-dimensional

symbol is recommended for incommensurate composites and

quasicrystals.

Correction. In Table 3 of I, the symbol m�43m?m in 19_2

should be m�3?m.
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R. Veysseyre for very useful comments. One of us (DW)

acknowledges the computational support by H. Veysseyre.
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