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A novel and general approach to scaling diffraction intensities is presented.

The method minimizes the disagreement among multiple measurements of

symmetry-related re¯ections using a stable re®nement procedure. The scale

factors are described by a ¯exible exponential function that allows different

scaling corrections to be chosen and combined according to the needs of the

experiment. The scaling model presented here includes: scale and temperature

factor per batch of data; temperature factor as a continuous function of the

radiation dose; absorption in the crystal; uneven exposure within a single

diffraction image; and corrections for phenomena that depend on the diffraction

peak position on the detector. This scaling model can be extended to include

additional corrections for various instrumental and data-collection problems.

1. Introduction

A natural starting point in the complex analysis of measure-

ments is to de®ne the data model that predicts observations

based on the physics of the experiment. The purpose of data

analysis is to solve the inverse problem ± how to obtain the

parameters of the physical model from the measurements. In

crystallography, the inverse problem has many steps, and this

article addresses one of them ± determination of the scaling

model in the diffraction data reduction process.

The basic equation that describes measured intensity of an

hkl re¯ection is (Guinier, 1994)

I�hkl� � Ibr2
e

�2

jS� x0jPT
V

v2
u

jF�hkl�j2DADS; �1�

where Ib is the ¯ux density of the primary beam; re � e2=mec2

is the classical electron radius (2.818 � 10ÿ15 m); � is the

wavelength; S� x0 is the cross product between the diffrac-

tion vector S and x0 (projection of the crystal rotation-speed

vector x on the plane perpendicular to the primary beam),

term jxj=jS� x0j is known as the Lorentz factor; P is the

polarization factor (AzaÂroff, 1955); T is the transmission

[absorbance is de®ned as A � ÿ ln T, T � exp�ÿA�]; vu is the

volume of a primitive crystal unit cell; V is the volume of the

crystal exposed by the beam; jF�hkl�j2 is the square of the

structure-factor amplitude for a given re¯ection hkl; DA is the

X-ray absorption in the detector's active material; DS is the

detector's response to a single absorbed X-ray photon; it may

depend on the wavelength, the position in the detector, the

incidence angle etc.

To derive jF�hkl�j2, all components of (1) need to be

determined. The product of all factors that multiply the

structure-factor amplitude squared is the total scale factor:

Imeasured � KjF�hkl�j2; �2�
Iscaled � �1=K�Imeasured; �3�

where I is the intensity and K is the total scale factor.

In principle, all scaling components in (1) can be calculated

from non-diffraction measurements and calibration of the

data-collection system. The total scale factor of a particular

observation can be expressed as

K � kokr � ko�kbeamkpolarizationkdetector . . .�: �4�

Typically, only relative scale factors, kr, are calculated and an

overall scale factor ko, common to all measurements, is

determined by comparing the scaled data to the squared

structure-factor amplitudes predicted from an atomic model.

The overall scale factor describes the typical lack of knowl-

edge about the absolute calibration of the whole system

(Evans, 1993).

We always assume that some components of scale factors

are known from detector calibration, beam monitoring and

the diffraction geometry; kc represents their product. The

scaling procedure described here determines only the

remaining part of the relative scale factors, ks:

K � kokcks: �5�

In many cases, quantities needed to describe ks are calculated

based on the knowledge from subsequent stages of crystal-

lographic analysis. In such cases, scaling and subsequent steps

should be done iteratively, with reasonable guesses for starting

values (see xx4.1 and 4.3).



2. General scaling method

The method presented here is a generalization of scaling

methods where parameterized scaling corrections were

applied, for example, using scale and temperature factor per

batch of data (Fox & Holmes, 1966; Stuart & Walker, 1979;

Evans, 1993). The presented method applies to crystal-

lographic scaling the concept of exponential modeling (Della-

Pietra et al., 1997). Scale factors for individual measurements

are calculated using a set of parameters pi:

ks�observation� � e �i pi fi�observation�� �: �6�

fi is a pre-de®ned modeling function of experimental condi-

tions for a given observation and pi specify the a priori

unknown parameters. The i is shorthand for the hierarchical

index, which describes here both the type of correction for a

given physical effect and indices of parameters for functions

describing this correction. Some of the functions fi in (6) can

be derived directly from the description of a particular

physical effect, for example an error of individual ampli®er

gain in multireadout channel CCD detectors (see x2.1.2). To

represent an unknown but smooth-shaped function, for

example one describing absorption in the crystal (see x2.1.3),

the combination of the basis functions fi and a group of

parameters can be used. The values of smooth functions rather

than the values of the pi coef®cients can be interpreted in

physical terms.

The advantage of the exponential modeling approach is its

¯exibility when dealing with correlations among parameters

and a uniform description of the parameter optimization

process for various scaling models.

2.1. Parameterization

Scale factors are used to describe crystal diffraction, the

experimental system and to correct for potential approxima-

tion errors during the integration step.

On the crystal diffraction level, the main problem is

absorption in the crystal, before and after diffraction (Kopf-

mann & Huber, 1968; Huber & Kopfmann, 1969; Stuart &

Walker, 1979; Schutt & Evans, 1985).

Typical instrumental problems are: beam ¯uctuations

(Stupakov & Heifets, 2002); the error in the position of the

rotation axis; inaccuracy of detector calibration (Tate et al.,

2000); mechanical problems resulting in non-uniform crystal

rotation and shutter errors (Evans, 1993).

Integration programs make certain assumptions about

diffraction spot shape and size. Crystal mosaicity and changing

spot shape may result in systematic underestimation of the

diffraction intensity owing to re¯ection tails extending past the

assumed shape. Imperfect pro®le shape predictions also result

in systematic effects (Diamond, 1969; Leslie, 1999).

Parameterization of a particular source of an effect

described by a scale factor may be quite effective in describing

other physical phenomena or approximation errors, and for

this reason re®ned values of parameters may not have a simple

physical interpretation. For example, beam intensity correc-

tions may also correct for changes in exposed volume of the

crystal.

2.1.1. Error in the Lorentz factor. An example of the

application of a modeling function is correcting for a small

discrepancy between the actual and assumed directions of the

crystal rotation axis. The inaccuracy results in an error in the

calculated value of the Lorentz factor. The scale factor to

correct this error can be described using the parameter pl,

whose value represents a small angular error, and the corre-

sponding function is

fl � S � x0=jS� x0j: �7�

2.1.2. Corrections that depend on the Bragg-peak position
on the detector. Detector-speci®c corrections are important

for measurements of a very weak phasing signal. A very small

correction, of about 1% in magnitude, can be critical for

phasing from weak anomalous scatterers. Even if the detector

sensitivity has been properly calibrated, it may have changed

with time. For detectors with multichannel read-out, the most

likely source of the above problem is a relative change in

ampli®er gains. The ampli®er corrections are represented by

characteristic functions corresponding to CCD areas read out

by separate channels:

fda;j �
1 for data read out by channel j

0 for data read out by other channels.

�
�8�

The parameters pda;j are logarithms of relative changes in

ampli®er gains.

Other detector corrections require a smooth function that

can be described by a series of basis functions. One possibility

is to use two-dimensional Fourier±Bessel series (Weissman,

1982); alternatively, one can use two-dimensional Chebyshev

polynomials or two-dimensional cosines (Boyd, 1991). The last

option transforms detector coordinates �x; y� onto the square

��0; 0�; ��; ���. For transformed values of coordinates, the

modeling function is

fd;n;m � cos�nx� cos�my�; �9�
where d; n;m are components of the hierarchical index i from

(6).

The above functions have been used to effectively correct

for the signal decay during the imaging plate read-out. To

correct for differences between plates in two-plate scanners,

an additional index is necessary to describe separate correc-

tions for individual plates.

Smooth functions dependent on the spot position might

correct also for other phenomena, e.g. the non-rotating

component of absorption, the incorrect polarization and

systematic errors in integration. In diffraction data collected

with a large oscillation range from mosaic crystals, re¯ections

diffracting along the rotation axis have a distorted spot shape.

Such spot-shape variability results in an integration error that

decreases with the distance from the projection of the rotation

axis onto the detector. A function that was found useful in

correcting for this effect is
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fc � aj flj=�a� j flj�; �10�
where fl is a function describing error in the Lorentz factor

[equation (7)] and a is a stabilizing factor (reasonable value

a = 5).

In the case of anisotropic mosaicity, this correction can be

made asymmetric with respect to the sign of fl (left/right

distinction for horizontal rotation axis). This can be accom-

plished by using two functions instead of the function in (10):

fc1 � step�fl�fc;

fc2 � step�ÿfl�fc;
�11�

where step is a step function with zero value for negative

arguments and one for positive.

2.1.3. Correction for the absorption component that
rotates with the crystal. Owing to a different geometry of

diffraction for every re¯ection, the absorption in the crystal is

not uniform. A frequently used approximation of crystal

absorbance is the average of absorbances in the incoming- and

diffracted-beam directions (Kopfmann & Huber, 1968). The

crystal absorption can be parameterized by real spherical

harmonics in the rotating crystal coordinate system

(Katayama, 1986; Blessing, 1995):

fas;lm � 1
2

�2l � 1��l ÿm�!
4��l �m�!

� �1=2 Plm�cos �i� sin�2�m�i�
�Plm�cos �o� sin�2�m�o�

� �
fac;lm � 1

2

�2l � 1��l ÿm�!
4��l �m�!

� �1=2 Plm�cos �i� cos�2�m�i�
�Plm�cos �o� cos�2�m�o�

� �
;

�12�
where as; lm and ac; lm are parts of the hierarchical index i

from (6); l;m are indices of spherical harmonics; Plm are

Legendre polynomials; �;� are polar coordinates of the

incoming (index i) and the outgoing (index o) directions in the

crystal coordinate system.

Owing to absorption being the same in opposite directions,

the odd-order spherical harmonics should have zero coef®-

cients and can be omitted in the description of pure absorp-

tion. Nevertheless, owing to correlation with other effects, the

scaling results can be improved by the inclusion of low-order

odd harmonics.

2.1.4. Overall scale per batch of data. This scale factor

describes the product of different physical effects: beam

intensity, illuminated crystal volume and average absorption.

It has a simple modeling function:

fsj
� 1 for data in batch j

0 for other data.

n
�13�

The parameter psj
is the logarithm of the scale factor for

batch j.

2.1.5. Decay described by B factor. Resolution-dependent

crystal decay can be described by a temperature factor that is a

function of the accumulated radiation dose. This dependence

can be stated explicitly:

fpb;n � �jS � Sj=2�dosen; �14�

where fpb for n � 1 describes a linear dependence and higher-

order terms can be added to describe more complex behavior

of radiation decay. Alternatively, the traditional approach is to

apply temperature factors separately to batches of data:

fbj
� jS � Sj=2 for data in batch j

0 for other data.

n
�15�

Parameter pbj
is the temperature factor of batch j.

2.1.6. Uneven crystal rotation and/or exposure. The rota-

tion method (Arndt & Wonacott, 1977) assumes that the

exposure is constant in the angular range. The factors that can

result in non-uniform exposure are: gear misalignment in the

crystal goniostat, beam ¯uctuations and X-ray shutter timing

errors. Uneven exposure can be reproducible from image to

image and may also have a random component. The correc-

tion for the reproducible part of exposure ¯uctuations is well

determined and its description needs relatively few param-

eters. The correction for the random component can be

problematic owing to a large number of parameters needed to

describe it. Random ¯uctuations should be eliminated rather

than corrected for by scaling. The main value of correcting for

random changes may lie in its usefulness as a powerful diag-

nostic tool to detect under-recognized instrumental problems.

Uneven exposure can be described by a function series

based on the sine and cosine of the goniostat angle � corre-

sponding to a diffraction condition for the center of a Bragg

peak. The correction of uneven exposure has to average the

exposure variations over the angular range in which a parti-

cular re¯ection diffracts. The angular range depends not only

on mosaicity but also on the geometry of a re¯ection crossing

the Ewald sphere.

The reproducible unevenness of exposure due to mechan-

ical backlash or a shutter error can be described by a series of

frequencies g � nt, where t � 2�=� and � is the rotation range.

For a particular periodicity g, the modeling functions are:

fu;g;sin � A sin�2��g�;
fu;g;cos � A cos�2��g�; �16�

where

A � 1

1� ac2 � bc4
; c � mgjSjjxj

2�jS� x0j :

For a Gaussian mosaicity pro®le, the averaging factor A

should be a Gaussian function that depends on the coef®cient

c. The expression for A approximates the Gaussian function

effectively but it can also approximate averaging resulting

from other mosaicity shapes. The averaging resulting from the

mosaicity shape function is described by two parameters, a and

b, that tend to have values close to one and zero, respectively.

For unusual shapes of intensity pro®les, a and b may need to

be optimized. To describe random ¯uctuations, one can use

the term fu;g;cos � A cos�2��g�, where g � nt=2 and n goes

from 1 to a maximum value. Parameters pu;g;c;j are indepen-

dent for every frame of data j. The term corresponding to

n � 0 is the same as the scale factor per batch of data (see

x2.1.4).



The consequence of averaging of the exposure variations

is the reduced impact of the ¯uctuations with very high

frequencies. For example, a stepper motor creates ¯uctuations

corresponding to the step size of the motor divided by the gear

ratio, typically 0.01� or less. For crystals of typical mosaicity,

the consequences of such high-frequency ¯uctuations are

negligible. Fluctuations of very low frequencies are corrected

by the scale factor per batch j. The ¯uctuations of intermediate

angular scale are the ones most affected by (16).

3. Optimization of scale factors

The scaling procedure determines the parameters pi [equation

(6)] by a method where a �2-like target function is minimized.

The target function describes the agreement between

symmetry-related re¯ections weighted by the expectation of

measurement errors. Two similar target functions can be

generated, depending on whether the intensities or their

logarithms are compared.

3.1. Logarithmic target function resulting in a fully linear
equation

A function that works very well in practice and whose

optimization always converges in one cycle is obtained from

comparing the logarithms of scaled measurements (Rae,

1965). First, we de®ne r as the logarithm of the unknown scale

factor ks:

r � ln�ks�; �17�
then Pm is the logarithm of the measured intensity Im for a

given observation:

Ps � ln�Is� � Pm ÿ r; �18�
where Ps is the logarithm of a scaled observation.

The intensity error estimate can be used to calculate the

error estimate of the logarithm of the intensity and the

corresponding weight u in the least-squares method:

u � �Im�2=��m�2: �19�
The logarithm of the geometrical average of symmetry-related

observations Pav [equation (20)] is

Pav �
P

n

un�Pm;n ÿ rn�
.P

n

un; �20�

where n is the index of symmetry-related observations of a

unique hkl. In the target function, we minimize the squared

difference between the logarithms of scaled intensity and the

scaled geometrical average of symmetry-related measure-

ments:

�2
ln �

P
hkl

P
n

�I2
m;n=�

2
m;n��Pm;n ÿ rn ÿ Pav�2 �

P
hkl

P
n

un�2
n: �21�

The minimum of the target function can be found by using

multivariate Newton methods. The ®rst and second derivatives

are straightforward to calculate. The ®rst derivative is calcu-

lated with respect to r and then, using the chain rule, the

derivative with respect to parameters pi is calculated:

��2
ln=�rp � 2

P
hkl

P
n

un�n��n=�rp

��n=�rp � up

.P
n

un ÿ �np �22�

��2
ln=�rp � ÿ2up�p:

The second derivative with respect to r is

�2�2
ln=�rp�rq � 2 �nqup ÿ upuq

.P
n

un

� �
: �23�

Because r is a linear function of unknown parameters pi:

r � ln�ks� �
P

i

pi fi; �24�

the ®rst derivative of the target function with respect to pi is

��2
ln=�pi �

P
p

���2
ln=�rp���rp=�pi� � ÿ

P
p

2up�pfi;p: �25�

It is important to note that the second derivative with respect

to pi for the logarithmic target function is constant ± inde-

pendent of the parameters pi [equations (23) and (25)]. In such

a case, the solution is given by a single matrix equation, and

there is no need to make initial guesses for parameter values.

3.2. Alternative refinement of scale factors

The traditional approach to ®nding scale factors is based on

an equation where the inverse rather than the logarithm of the

scale factor appears and where we use the arithmetic rather

than the geometric average of intensities:

�2 �P
hkl

P
n

�k2
s;n=�

2
n��Is ÿ hIihkl�2; �26�

where ks is the scaling factor, �n is the estimated error of Im

and hIihkl is the mean intensity of re¯ections for a given hkl.

The calculation of the ®rst and then the second derivative

with respect to ks follows the same logic as in the case of a

logarithmic function. First derivative:

��2=�ks;n � ÿ�2=�2
n�hIihkl�ks;nhIihkl ÿ Im;n�; �27�

and second derivative:

�2�2=�ks;p�ks;q � 2�pqaphIi2hkl ÿ 2apaq

.P
n

ank2
s;n

� �
� �2kqhIihkl ÿ Iq��2kphIihkl ÿ Ip�; �28�

where a � 1=�2.

However, the formula

2�pqaphIi2hkl ÿ 2apaq

.P
n

ank2
s;n

� �
�kqhIihkl ÿ Iq��kphIihkl ÿ Ip�;

�29�
when used as a second derivative in the Newton method, gives

better convergence because it better approximates the second

derivative at the minimum of the target function.

Since in this case the second derivative is not constant with

respect to ks, the Newton method has to be used iteratively.

It is not clear if or when scale factors determined by loga-

rithmic or traditional approaches are better, but even in the

case when one prefers the traditional approach, it is preferable
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to run the ®rst cycle with the logarithmic function owing to its

superior convergence.

3.3. The description of stabilization based on the prior
knowledge of the magnitude of corrections

For re¯ections with no redundancy, scale factors are

extrapolated from other measurements. Generally, without

additional restraints, the extrapolation is unstable for highly

correlated parameters. In the method presented here, the

restraints can be obtained from the prior knowledge about the

reasonable magnitude of re®ned parameters. The logic behind

it is the same as that behind the restraints in the atomic

re®nement. For example, one can assume that logarithms of

scale factors typically do not ¯uctuate more than ws between

frames, where expectation about ws is a function of the data-

collection stability (beam stability, goniostat and/or crystal

vibrations). This knowledge is described by adding a penalty

term to the functions being optimized:

�1=w2
s ��psj

ÿ psj�1
�2; �30�

where psj
is a logarithm of the scale factor for batch j.

We can similarly treat the expectation about the magnitude

of absorption coef®cients. For a smooth absorption with the

expectation of decreasing magnitude of parameters for high

orders of spherical harmonics [equation (21)], a reasonable

penalty term added to the target function [equation (21)] is

l2�p2
as;lm � p2

ac;lm�=w2
a: �31�

If we do not want to penalize high-order terms more, we can

use the following term:

�p2
as;lm � p2

ac;lm�=w2
a: �32�

In a similar fashion, penalty terms can be created and used to

restrain all the other scaling parameters.

4. Discussion

4.1. Success criteria

The main criteria of scaling effectiveness come from

subsequent stages of analysis: merging, phasing etc., described

elsewhere. During scaling itself, we can only judge the

convergence and the value of the target function ± overall �2.

The method described above, based on the logarithmic

target function, always converges in one cycle. Thus, the next

step ± merging ± can always be accomplished, even with

problematic data. A high value of overall �2 in itself does not

differentiate whether it is due to anomalous signal, low quality

of data or an unreasonable error model. Comparing scaled

symmetry-related data allows for the calculation of various

statistics in order to identify potential problems with data

quality, with the error model or the existence of non-

isomorphism in the diffraction.

Potentially, merging analysis may separate sources of

variability in the structure factors owing to anomalous and

dispersive effects, radiation-induced changes, non-iso-

morphism among crystals, and pseudosymmetry. In the case of

structure factors not being constant, it is usually better to

ignore this variability during determination of the scale factors

and to scale the re¯ections but separate them during merging

(Evans, 1993; Otwinowski & Minor, 2000). Redetermination

of the error model, postre®nement and rejection of outliers

may impact the assumptions about the data to be scaled, so it

maybe worthwhile to redo the scaling after the execution of

these steps.

In the following example, the structure factors were stable

and the measurement errors were lower than in most experi-

ments. Traditional scaling with scale and temperature factor

per batch of data resulted in better than average merging

statistics, but still with a rather low value of the signi®cance

ratio for anomalous scattering from intrinsic sulfur. Applica-

tion of the above-described scaling corrections improved the

merging statistics and resulted in a signi®cant anomalous

signal for medium resolution (Table 1).

4.2. Global and local scaling

Global scaling can be followed by local scaling (Matthews &

Czerwinski, 1975). Local scaling is mostly applied to calculate

differences of the phasing signal, where it is assumed that a

group of measurements, for example those close together in

the reciprocal space or in the detector space, should be on a

similar scale. A ¯exible parameterization by the exponential

modeling allows for a good description of all kinds of smooth

Table 1
Comparison of the traditional scaling, de®ned as a scale and temperature factor per diffraction image, with scaling based on the method presented.

The crystal of �-hydroxydecanoyl thiol ester dehydrase (Leesong et al., 1996) with 2 � 171 amino acids in an asymmetric unit, unit cell of P212121 symmetry
(a = 59.7, b = 66.9, c = 86.0 AÊ ), was measured at Cu K� wavelength with an R-axisII detector. An anomalous signal comes from 2� 9 single sulfur atoms. The same
outlier list and error model were used in both cases. The following statistics are presented: RmM is the Rmerge for merged Friedel pairs, �2M is the goodness of ®t for
merged Friedel pairs, U refers to the same statistics calculated for unmerged Friedel pairs, AS is the statistical signi®cance coef®cient of the anomalous signal
de®ned as a ratio �2M to �2U. When the value of AS is close to 1, the anomalous diffraction signal is lost in the noise.

Traditional scaling After corrections

Resolution shell (AÊ ) RmM �2M RmU �2U AS RmM �2M RmU �2U AS

20.00±4.33 0.014 3.75 0.017 2.71 1.38 0.010 2.57 0.006 0.97 2.65
4.33±3.44 0.019 4.20 0.020 4.42 0.95 0.009 1.60 0.006 0.94 1.71
3.44±3.01 0.024 3.26 0.025 3.74 0.87 0.012 1.47 0.009 1.05 1.39
3.01±2.73 0.028 2.57 0.030 2.88 0.89 0.017 1.36 0.013 0.98 1.39

Overall 0.023 1.98 0.027 1.98 ± 0.017 1.39 0.012 1.03 ±



corrections. Local scaling is much more limited in terms of

what type of smooth variation is being corrected for, so it is

unlikely to provide additional bene®t to the general scaling

method described here.

4.3. Related problems non-correctable by multiplicative
scaling

The basic equation (1) assumes a crystal with a level of

imperfection that results in negligible extinction. More perfect

crystals require a non-linear correction for extinction.

However, crystals often are more than `ideally imperfect'

(Guinier, 1994). The departure from crystallinity may result in

diffuse scattering, extra modulation (incommensurate struc-

ture), stacking disorders, large mosaicity that produces spot

overlap, twinning etc. The sample may also be contaminated

with other crystals or ice. These problems may require further

analysis with already scaled data but with results that can

impact the assumption about the data to be scaled. As in the

case of changes in the error model or outliers rejection,

iterations may be needed.

One of the purposes of scaling is to correct for a reasonable

level of imperfection in the measurement system. Such a

procedure may also attempt to correct severe problems

resulting in non-obvious behavior of the determined scale

factors. For example, an incorrect or missing description of the

beamstop produces similar effects to a very large absorption in

an area of reciprocal space. The smoothly varying absorption

correction will produce a high estimate of absorption not only

for the area behind the beamstop but also for re¯ections at

some distance from the beamstop. Such problems should not

be corrected by scaling, but rather by applying the proper

experimental procedure.

4.4. Detector calibration

The purpose of scale determination can be the calibration of

the instrument rather than the structure determination. For

this purpose, one can use a diffraction pattern from a very high

quality crystal, but it is even better to use arti®cial patterns. In

particular, grid masks can be used not only for distortion

calibration but also for the calibration of the detector sensi-

tivity in addition to the ¯ood ®eld method. Sensitivity cali-

bration can also be de®ned as a problem of ®nding a

multiplicative scale function, so it can be parameterized and

determined in analogous fashion as described above. This may

help to solve problems in detector calibration discussed before

in the literature (Tate et al., 2000).

5. Summary

The structure determination from a single-crystal diffraction

experiment requires scale factors that relate measured and

calculated intensities. We describe here a scaling procedure

based on exponential modeling that is very effective in

correcting for factors that are dif®cult to calculate from the

physical description of the experiment. Because such factors

always exist in macromolecular crystallography owing to the

complex geometry of absorption around the crystal and owing

to radiation decay, this kind of scaling is in practice necessary.

It is also effective in small-molecule crystallography.

The power of the described method comes from the abso-

lute stability of the re®nement for virtually any description of

experimental problems. All so-far proposed parameterizations

(Fox & Holmes, 1966; Rossmann et al., 1979; Evans, 1993) can

be accommodated into an exponential approach. The par-

ameterizations described here are being implemented in

Scalepack (Otwinowski & Minor, 1997, 2000). This program

corrects for a large group of problems that have been

observed to be signi®cant, though typically not all problems in

every case. The development of the parameterization was

driven by the recognition of problems encountered in practice.

This process is likely to continue. The remarkable success of

applying the corrections discussed in this article requires a

description of the problems in the particular experiments, a

subject of separate publications.

The parameters in the scaling model should be chosen on

the basis of the aim of the experiment and the understanding

of what is the most signi®cant scaling problem likely to be

encountered. The choice of parameterization is particularly

important when obtaining the phasing signal is the target of

the experiment. For typically sized crystals, errors in the

measurements of strong re¯ections are mostly multiplicative,

so in principle an appropriate scaling model can correct them.

Carefully conducted experiments with proper scaling should

allow for SAD structure solution from sulfur and other weak

scatterers to be more than a rare occurrence.
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