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Charge ordering in mixed-valence transition metal oxides is
a subject of great interest in solid state physics, very likely
related to many electronic and magnetic properties that these
compounds display. Within the transition metal oxides systems,
vanadates offer an enormous playground of compounds where
different valence states can coexist, and which may eventually
give rise to quantum spin antiferromagnetic orderings.
Recently, the detailed study of the V4+- rich zone of the
sodium-vanadium-oxygen phase diagram has led to the
structural characterization of the vanadium oxide bronze

�-Na1.286V2O5 [1-2] (also denoted by the stoichiometric formula
Na9V14O35). The structure of the latter (space group P2/c) is
built up of layers consisting of VO5 square pyramids sharing
edges and corners with their apical oxygens pointing up and
down alternately to form double strings in the [100] direction.
These double strings are isolated in the [001] direction via VO4

tetrahedra and have a stair-like shape with a step every ten VO5

square pyramids. This compound has been reported to exhibit
[2] a spin-gap behaviour, although its magnetic susceptibility
curve could not be fitted by theoretical equations for spin-gap
systems. It is presently considered as a new type of
low-dimensional system.

This contribution will give an overview of recent results [3]
obtained by low temperature x-ray diffraction on the

�-Na1.286V2O5 phase. The x-ray data clearly reveal the
existence, around 100 K, of a structural second-order phase
transition, stabilizing a superstructure associated with charge
ordering.
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In this report, we present a survey of atomic displacement
effects on the anisotropy of x-ray resonant scattering and
discuss thermal-motion-induced (TMI) and point-defect-
induced (PDI) “forbidden” reflections [1-5]. To this purpose,
tensor structure factors and unusual polarization properties of
both types of reflections are calculated. Owing to their resonant
character, the TMI and PDI reflections allow for separate
studies of both impurity and host atoms of different types. The
considered phenomena can provide a very sensitive tool to
assess point defects because only those atoms produce
contributions to the PDI reflections that are "distorted" by
defects and have appropriate absorption edges.

Strongly temperature dependent TMI reflections were
recently observed in Ge [3,4] and in ZnO [5]. Owing to
interference with the temperature-independent contribution,
their intensities can increase and decrease with temperature. In
Ge crystals, the contributions from vibrations parallel and
perpendicular to atomic bonds were separated [4]. Drastic
changes of the diffraction spectra were found in ZnO, contrary
to the rather small changes observed for Ge. Using two different
theoretical approaches [6,7] we present ab initio simulations of
the temperature dependence and of diffraction spectra for Ge
and ZnO.
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