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In this paper we consider a one-parameter family of 1D
quasicrystals. Specifically, our model is a fixed (Fibonacci)
sequence of two types of "atoms" with a varying amount of
space around each type of atom, under assumption that the
overall density is fixed. The control parameter � is the ratio of
the two allowed distances between nearest neighbors. In all
cases, the diffraction pattern is discrete, and the locations of the
Bragg peaks are independent of �. However, the intensities of
the peaks are �-dependent. When � is rational, the intensities
form a periodic pattern, while when � is irrational, the
diffraction pattern is aperiodic. We compute this diffraction
pattern in two independent but equivalent ways: a) by
recovering periodicity going to higher dimension (the "cut and
project method"); b) using the concept of the reference lattice
(proposed in [1]), taking advantage of physical space properties
of the set only. As a result we get that the amplitude of each peak
is a continuous function of �. In fact, it is infinitely
differentiable. As � is varied, there is no phase transition
between commensurate and incommensurate diffraction
patterns; the evolution is smooth. As such, with measurement
apparatus of fixed accuracy, it is impossible to determine
whether a given pattern is precisely periodic. These results are
compared to the ergodic theory of tiling spaces. It is known that
the Bragg peaks of a tiling T occur at eigenvalues of the
generator of translations on the hull of T (i.e., the space of all
tilings in the same local isomorphism class as T) [2]. It is also
known [3] that the hulls of modified Fibonacci chains with the
same average spacing are topologically conjugate, hence that
their generators of translations have the same spectral
decomposition. The question of when and how such a
modification affects the dynamical spectrum was addressed for
one dimensional patterns in [4]. (It should be noted that for a
substitution tiling whose substitution matrix has two of more
eigenvalues greater than 1, a generic change in tile length will
destroy the Bragg peaks altogether, in sharp contrast to the
behavior of modified Fibonacci chains, other Pisot
substitutions, and other Sturmian sequences.) Ergodic theory
says nothing, however, about the intensities of the Bragg peaks.
Although the spectrum of the generator of translations is
complicated, for special values of the control parameter some of
the peaks may have intensity zero, resulting in a simpler
diffraction pattern. The calculations in this paper demonstrate
that this does in fact happen.
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Since the first report of quasicrystals was reported 20 years
ago, great efforts have been made to find out the nature of
quasicrystals. Different approaches are made to determine the
structures of quasicrystals. One approach of solving
quasicrystal structures is from their approximants, since it was
found by high resolution electron microscopy that quasicrystals
and their approximants have very similar building clusters. In
many cases, a series of approximants is related to a quasicrystal
[1]. The unit cell dimensions of different approximants within
the same series increase by the golden number �, �2, �3… At the
end of such a series, when the unit cell dimensions become
infinite, a quasicrystal is formed. Based on this, a few structure
models have been proposed for different quasicrystals.
However, there is no general procedure for solving quasicrystal
structures from their approximants. Recently we have derived a
new general approach for solving quasicrystal structures from
their approximants. By analysing the structure factor phases and
amplitudes of the approximants within a series, we found the
common features among those approximants. Those common
features should also exist in the corresponding quasicrystal. In
this way, we can generate the structure of a series of
approximants with unit cells inflated by �, and finally the perfect
structures of quasicrystals. For example, the approximants
starting with Al13Fe4 [2] (C2/m, a = 15.489, b = 8.083, c =
12.476 Å and � = 107.71°) approach the decagonal quasicrystal
in the Al-Fe system (Fig. 1). This method is general and can be
applied to all types of quasicrystals, including decagonal and
icosahedral quasicrystals.
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Fig. 1 (a) Projection of the Al13Fe4 related quasicrystal
deduced from the structure of Al13Fe4. (b) The corresponding
Fourier transform of (a).

[1] Ma, X. L., Li, X. Z., Kuo, K. H., Acta Cryst. B51, 36-43 (1995).
[2] Freiburg, C., Grushko, B., Wittenberg, W., Reichert, W., Mater.

Sci. Forum. 228-231, 583-586 (1996).

Page s190 22nd European Crystallographic Meeting, ECM22, Budapest, 2004
Acta Cryst. (2004). A60, s190

SIG3 MS12 – Quasicrystals


