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Accurate, yet simple and efficient, formulae are presented for calculation of the

electrostatic potential (ESP), electric field (EF) and electric field gradient

(EFG) from the aspherical Hansen–Coppens pseudoatom model of electron

density [Hansen & Coppens (1978). Acta Cryst. A34, 909–921]. They are based

on the expansion of |r0 � r|�1 in spherical harmonics and the incomplete gamma

function for a Slater-type function of the form Rl(r) = rn exp(��r). The formulae

are valid for 0 � r � 1 and are easily extended to higher values of l. Special

treatment of integrals is needed only for functions with n = l and n = l + 1 at r = 0.

The method is tested using theoretical pseudoatom parameters of the

formamide molecule obtained via reciprocal-space fitting of PBE/6-31G**

densities and experimental X-ray data of Fe(CO)5. The ESP, EF and EFG values

at the nuclear positions in formamide are in very good agreement with those

directly evaluated from density-functional PBE calculations with 6-31G**,

aug-cc-pVDZ and aug-cc-pVTZ basis sets. The small observed discrepancies are

attributed to the different behavior of Gaussian- and Slater-type functions near

the nuclei and to imperfections of the reciprocal-space fit. An EF map is

displayed which allows useful visualization of the lattice EF effects in the crystal

structure of formamide. Analysis of experimental 100 K X-ray data of Fe(CO)5

yields the value of the nuclear quadrupole moment Q(57Fem) = 0.12 � 10�28 m2

after taking into account Sternheimer shielding/antishielding effects of the core.

This value is in excellent agreement with that reported by Su & Coppens [Acta

Cryst. (1996), A52, 748–756] but slightly smaller than the generally accepted

value of 0.16 � 5% � 10�28 m2 obtained from combined theoretical/spectro-

scopic studies [Dufek, Blaha & Schwarz (1995). Phys. Rev. Lett. 25, 3545–3548].

1. Introduction

The electrostatic potential V(r) (ESP) is one of the most

important properties in the study of molecular reactivity and

the analysis of molecular bonding and packing in crystals.

It is related to the physically observable property of the

electron density (ED) via Poisson’s equation (Coppens,

1997):

r2VðrÞ ¼ �4��totalðrÞ; ð1Þ

where �total includes both electronic and nuclear charges:

�totalðrÞ ¼ �nucðrÞ � �ðrÞ ð2Þ

and �(r) is the electron density. For a continuous charge

distribution, the potential is obtained by integration of the

density over all space:

VðrÞ ¼

Z
�totalðr

0Þ

jr0 � rj
d3r0; ð3Þ

where r and r0 have an arbitrary common origin. The negative

of the first derivative of the ESP is the electric field E(r) (EF):

EðrÞ ¼ �rVðrÞ ¼ �i
@VðrÞ

@x
� j

@VðrÞ

@y
� k

@VðrÞ

@z
; ð4Þ

while the negative of the second derivative of the ESP is the

electric field gradient (EFG):

E��ðrÞ ¼ �
@2VðrÞ

@r�@r�
: ð5Þ

Just as the total density �total(r), the ESP in the molecule can

be separated into electronic Velec(r) and nuclear Vnuc(r)

contributions:
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VðrÞ ¼ Vnuc
ðrÞ þ Velec

ðrÞ ¼
X

i

Vnuc
i ðrÞ

 !
þ Velec

ðrÞ

¼
XN

i¼1

Zi

jRi � rj
�

Z
�ðr0Þ

jr0 � rj
d3r0; ð6Þ

where i = 1, . . . , N is the index of the nucleus located at Ri

carrying positive charge Zi. The second term represents the

contribution of the continuous distribution of the negatively

charged electron density �(r). When calculating V(r) at any

point in space where r 6¼ Ri, both terms need to be taken into

account, while, at r ¼ Ri, the contribution of the nuclear

potential of the ith nucleus (located exactly at Ri) must be

omitted. The calculation of the nuclear potential and its

derivatives is trivial and need not be described here. It is the

calculation of the electronic potential Velec(r) that presents

more problems.

Various methods for calculating the ESP from X-ray

diffraction data have been described and consequently applied

in the literature. These methods can basically be split into two

very different groups: (i) directly from experimentally

measured structure factors (Bertaut, 1978; Stewart, 1979;

Schwarzenbach & Thong, 1979) and (ii) from static models of

electron density. Discussion of methods belonging to group (i)

lies outside the scope of this paper. More important is the

second group, which allows the calculation of electrostatic

properties of atoms and molecules from the electron densities

deconvoluted from nuclear motions. These are relatively

unaffected by Fourier-series termination and allow a direct

comparison with theoretical results. These methods are based

on so-called pseudoatom charge-density models.

By far the most widely used aspherical pseudoatom form-

alism is based on the Hansen–Coppens multipolar model of

ED (Coppens, 1997; Hansen & Coppens, 1978). In this form-

alism, the electron density at each point in space �(r) is

described by a superposition of atomic like densities �at(r),

called pseudoatoms:

�ðrÞ ¼
P
�atðrÞ: ð7Þ

Each pseudoatom is modeled using the modified Laplace

series:

�atðrÞ ¼ Pcore�coreðrÞ þ Pval�
3�valð�rÞ

þ
Plmax

l¼0

�03Rlð�
0rÞ
Pl

m¼0

Plm�dlm�ð�Þ: ð8Þ

The first and second terms of expansion are the spherically

averaged Hartree–Fock core and valence densities (Clementi

& Roetti, 1974). The population of the core, Pcore, is always

frozen, while the population of the spherical valence shell Pval

is refined together with the expansion–contraction parameter

�. The third term describes the aspherical deformation density.

Coefficients Plm� are the population parameters and �0 are the

dimensionless adjustment coefficients of the radial functions

Rl. In equation (8), r is the distance from the pseudoatom

center, r = |r � R|, and � are the corresponding angular

coordinates. The angular factor dlm� is a real density-

normalized spherical harmonic:

dlm�ð�Þ ¼ Dlmylm�ð�Þ; ð9Þ

where m � 0 and ylm� is the normalized linear combination of

complex spherical harmonics:

y00 ¼ Y00

ylmþ ¼ ð�1ÞmðYlm þ Yl;�mÞ=
ffiffiffi
2
p
; m> 0

ylm� ¼ ð�1ÞmðYlm � Yl;�mÞ=
ffiffiffiffiffiffi
�2
p

; m> 0:

ð10Þ

Renormalization factors Dlm are given by Paturle & Coppens

(1988) and Coppens (1997).

Calculation of the electrostatic potential and its first and

second derivatives, i.e. negatives of electric field and electric

field gradient, respectively, from the pseudoatom model is not

straightforward. It was shown that the electrostatic potential

can be evaluated from the pseudoatom model in various ways,

e.g. directly from �(r) or from its truncated Fourier-series

expansion (Brown & Spackman, 1994).

The method of Su & Coppens (1992, 1996) is based on the

Fourier convolution theorem previously applied by Epstein &

Swanton (1982) to a calculation of the EFG. While it does not

contain approximations and is formally exact at any point in

space, it involves the evaluation of fairly complicated one-

electron two-center integrals. This method was encoded in the

computer program MOLPROP and later included in the

experimental charge-density package XD (Koritsanszky et al.,

2003). However, the program does not always reproduce the

correct results when theoretical structure factors are used to

evaluate the physical properties. It is not clear whether this is

due to programming errors or errors in the derivation of two-

center integrals [labeled as AN;l1;l2;k
ðZ;RÞ in the original

paper]. Note that the method of Su & Coppens only allows

calculation of the traceless EFG tensor at the nuclear posi-

tions.

Several methods for the calculation of the ESP/EFG were

proposed by Brown & Spackman (1994). The direct-space

evaluation of the EFG, also based on the Fourier transform

theorem, is closely related to that of Su & Coppens. It was

included in the experimental charge-density package

VALRAY (Stewart et al., 1998). These authors also presented

the combined Fourier/direct-space evaluation of the EFG, as

well as calculation of the EFG via numerical differentiation of

the ESP. While giving more or less reasonable results, these

methods are either too computationally demanding or have

convergence problems with Fourier sums.

Ghermani, Bouhmaida, Lecomte and co-workers (Lecomte

et al., 1992; Ghermani, Bouhmaida & Lecomte, 1993; Gher-

mani, Lecomte & Bouhmaida, 1993; Ghermani et al., 1994;

Bouhmaida et al., 1997) reported expressions for the ESP

derived directly from the Hansen–Coppens density model

[equation (8)], in which the ESP due to a pseudoatom is

expanded in the same way as the density �at(r) itself [equation

(8)], i.e.

VatðrÞ ¼ VcoreðrÞ þ VvalðrÞ þ�VðrÞ: ð11Þ
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Here Vcore(r), Vval(r) and �V(r) are the spherical core,

spherical valence and aspherical deformation contributions,

respectively, and are given by

VcoreðrÞ ¼
Z

jr� Rj
�

Z1
0

�coreðr
0Þ

jr� R� r0j
d3r0; ð12Þ

VvalðrÞ ¼ �

Z1
0

Pval�
03�valð�

0r0Þ

jr� R� r0j
d3r0; ð13Þ

�VðrÞ ¼ �4�
X

lm

�0Plm

2l þ 1

�
1

�0lþ1jr� Rjlþ1

Z�0 jr�Rj

0

tlþ2RlðtÞ dt

þ �0ljr� Rjl
Z1

�0jr�Rj

RlðtÞ

tl�1
dt

�
dlmð�Þ; ð14Þ

where R is the position of the nucleus and r0 is the position

vector relative to R [unlike that in equation (3)]. Note that, in

expression (12), the contribution of the nuclear potential is

explicitly combined with the core-electron contribution.

Formula (14) was derived using Green’s function and the

property of orthogonality of the spherical harmonic functions

and is valid for any point in space, since no approximations

are used. These formulae were implemented in the program

ELECTROS (Ghermani et al., 1992) derived from the earlier

program MOLPOT (He, 1983). Numerous studies have been

published using this approach.

In the current paper, we review the derivation of equation

(14), providing more detail than available in the literature. In

particular, we call attention to practical problems associated

with numerical instabilities, and present simple stable

expressions for the ESP, EF and EFG that overcome these

problems. We apply our methods in a theoretical study of the

EF in the crystal structure of formamide and in a determina-

tion of the 57Fem nuclear quadrupolar moment from experi-

mental X-ray diffraction data.

2. Calculation of the electronic potential and its
derivatives for Slater-type functions

Each term in the pseudoatom formalism (8) can be reduced to

a linear combination of Slater-type (Slater, 1932) density basis

functions with the general form

�ðrÞ ¼ RðrÞdlm�ð�Þ ¼ Nðn; �Þrn expð��rÞdlm�ð�Þ; ð15Þ

where � is the effective exponent and N(n, �) is the normal-

ization factor (Coppens, 1997). The corresponding electro-

static potential is

V�ðrÞ ¼ �

Z
�ðr0Þ

jr0 � rj
d3r0: ð16Þ

jr0 � rj�1 can be expanded in real spherical harmonics

(Jackson, 1975):

1

jr0 � rj
¼
X

l

4�

2l þ 1

rl
<

rlþ1
>

X
m

ylm�ð�Þylm�ð�
0
Þ; ð17Þ

where r< is the smaller and r> is the greater of jr� Rj and

jr0 � Rj. Note that the ylm� are obtained by unitary transfor-

mation of the Ylm, which implies that the form of the spherical

harmonic addition theorem (Edmonds, 1974) is preserved, i.e.

Pl

m¼�l

Y�lmð�ÞYlmð�
0Þ ¼

Pl

m¼0

ylm�ð�Þylm�ð�
0Þ: ð18Þ

When (15) and (17) are inserted into (16), the only term in the

double sum that survives after integration over �0 is that term

for which the lm� indices match those in �(r). This follows

immediately from orthonormality of the ylm� functions. Thus,

V�ðrÞ ¼
4�

2l þ 1
Nðn; �Þdlm�ð�Þ

Z1
0

rl
<

rlþ1
>

ðr0Þnþ2 expð��r0Þ dr0:

ð19Þ

The radial integral in (15) splits into two terms:

Iðn; l; �rÞ ¼

Z1
0

rl
<

rlþ1
>

rnþ2 expð��rÞ dr

¼
1

jr� Rjlþ1

Zjr�Rj

0

rnþlþ2 expð��rÞ dr

þ jr� Rjl
Z1
jr�Rj

rnþ1�l expð��rÞ dr

¼ I1ðn; l; �rÞ þ I2ðn; l; �rÞ; ð20Þ

so expression (19) becomes simply

V�ðrÞ ¼
4�

2l þ 1
Nðn; �Þdlm�ð�ÞIðn; l; �rÞ: ð21Þ

Essentially the same formula is given by Ghermani, Bouh-

maida, Lecomte and co-workers (Lecomte et al., 1992; Gher-

mani et al., 1992; Ghermani, Lecomte & Bouhmaida, 1993;

Ghermani, Bouhmaida & Lecomte, 1993; Ghermani et al.,

1994; Bouhmaida et al., 1997). Integrals I1(n, l, �r) and

I2(n, l, �r) have the form of the incomplete gamma function (te

Velde, 1990; te Velde et al., 2001):

I1ðn; l; �rÞ ¼
ðnþ l þ 2Þ!

�nþ2

1

ð�rÞlþ1
1� expð��rÞ

Xnþlþ2

i¼0

ð�rÞi

i!

" #
;

ð22Þ

I2ðn; l; �rÞ ¼
ðn� l þ 1Þ!

�nþ2
ð�rÞl expð��rÞ

Xn�lþ1

i¼0

ð�rÞi

i!
: ð23Þ

The exponential terms in equations (22) and (23) represent

the effects of the interpenetration of the charge-density

distributions. The remaining term in equation (22) is the radial

factor for the potential of a point multipole. These expressions

are satisfactory for large values of �r but their straightforward

evaluation for small values of �r results in severe numerical
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round-off errors as illustrated in Table 1. Numerical errors are

relatively insensitive to n but grow rapidly with increasing l

and decreasing �r. The corresponding errors for first and

second derivatives required for evaluation of EF and EFG are

significantly greater than those for the ESP. The numerical

errors are entirely due to the term I1(n, l, �r), and can be

avoided by rearranging equation (22):

I1ðn; l; �rÞ ¼
ðnþ l þ 2Þ!

�nþ2

1

ð�rÞlþ1
expð��rÞ

X1
i¼nþlþ3

ð�rÞi

i!

¼
ðnþ l þ 2Þ!

�nþ2
expð��rÞ

X1
i¼nþ2

ð�rÞi

ðiþ l þ 1Þ!
: ð24Þ

This is a well behaved expression for any r. The rate of

convergence of this infinite series is reported in Table 2. Thus,

expression (24) is recommended for use for ‘small’ values of �r

while expression (22) is preferred for medium and large values

of �r as it converges more rapidly in that case.

Alternatively, integral I(n, l, �r) can be replaced with its

Taylor-series expansion:

Iðn; l; �rÞ ¼
1

�nþ2

�
ðn� l þ 1Þ!ð�rÞl

� ð�rÞnþ2
X1
k¼0

ð��rÞkð2l þ 1Þ

k!ðkþ n� l þ 2Þðkþ nþ l þ 3Þ

�
:

ð25Þ

Table 2 reports the number of terms required to achieve given

accuracy when computing both I(n, l, �r) and its derivatives.

Errors are relatively insensitive to l and n.

Formula (21) can be directly applied to the deformation

part of the pseudoatom expansion because the spherical

harmonics of deformation functions are already density

normalized (Coppens, 1997). The spherical core and valence

densities are, however, calculated from products of wave-

function-normalized Slater functions. Nevertheless, the

product of two Slater functions on the same center is still a

Slater function:

N1rn1 expð��1rÞN2rn2 expð��2rÞ

¼ ðN1N2Þðr
n1þn2 Þ exp½�ð�1 þ �1Þr�

¼ N3rn3 expð��3rÞ; ð26Þ

therefore, formula (21) can still be applied.

The first (EF) and second (EFG) derivatives of the ESP are

then obtained by straightforward differentiation of expression

(21).

3. Calculation of the electronic potential and its
derivatives near r = 0

Functions dlm�(�) and their derivatives are poorly behaved

near the origin, as they contain direction cosines, so we

remove a factor rl from I(n, l, �r) and incorporate it into the

angular factor:

V�ðrÞ ¼
4�

2l þ 1
Nðn; �Þ½dlm�ð�Þr

l�½r�lIðn; l; �rÞ�: ð27Þ

Note that all terms in (25) contain powers of �r of l or higher.

For l � 4, derivatives of dlm�(�)rl functions are simple and

well behaved at any r. For example, the second partial deriv-

ative of d41�(�)r4 w.r.t. xy is L41�(�6xz), where L41� = 0.474

is the density function normalization factor (Paturle &

Coppens, 1988). No second derivative is more complicated

than that of d40(�)r4 w.r.t. xx, which is simply

L40(36x2 + 12y2
� 48z2). Note that first derivatives of

dlm�(�)rl vanish at r = 0 for all functions except for

@½d11þr�

@x
¼
@½d11�r�

@y
¼
@½d10r�

@z
¼ L1m ¼ 0:31831: ð28Þ

The second derivatives of dlm�(�)rl vanish at r = 0 for all

functions except for

@2½d21r2�

@x@z
¼
@2½d21�r2�

@y@z
¼
@2½d22r2�

@x@x
¼
@2½d22�r2�

@x@y
¼ L2m;

@2½d20r2�

@x2
¼
@2½d20r2�

@y2
¼ �2L20;

@2½d20r2�

@z2
¼ 4L20;

@2½d22r2�

@y2
¼ �L22:

ð29Þ

We define function G(r) as follows:

GðrÞ ¼ r�lIðn; l; �rÞ: ð30Þ

To simplify the notation of G, the dependence on the n and l

indices is implicitly understood. Let

j ¼ n� l � 0: ð31Þ

The G(r) function is finite and smooth at the origin and decays

to zero as r�2l�1 for large r. For small r, the Taylor expansion
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Table 2
Number of terms in equations (24) and (25) needed to achieve given
accuracy.

Number of significant digits

�r 10 15

0.25 10 13
0.50 12 16
0.75 14 18
1.00 15 20
1.25 17 21
1.50 18 23

Table 1
Number of significant digits lost in direct evaluation of formulas (22) and
(23).

l

�r 0 1 2 3 4

0.25 1 4 6 9 12
0.50 1 2 5 8 9
0.75 0 3 4 6 9
1.00 0 2 4 5 7
1.25 0 1 3 5 7
1.50 1 2 1 4 6



can be used. Table 2 is equally applicable to the Taylor-series

expansion of G(r) and its derivatives:

GðrÞ ¼
1

�jþ2
ðjþ 1Þ!þ ð�1Þjþ1

X1
k¼jþ2

ð��rÞkð2l þ 1Þ

kðk� j� 2Þ!ð2l þ 1þ kÞ

" #
:

ð32Þ

Alternatively,

GðrÞ ¼
ðjþ 1Þ!

�jþ2
� rjþ2

X1
k¼0

ð��rÞkð2l þ 1Þ

k!ðkþ jþ 2Þð2l þ 3þ jþ kÞ
: ð33Þ

For example, when n = l then

GðrÞ ¼
1

�2
� r2 ð2l þ 1Þ

2ð2l þ 3Þ
�
ð�rÞð2l þ 1Þ

3ð2l þ 4Þ
þ
ð�rÞ2ð2l þ 1Þ

8ð2l þ 5Þ
� . . .

� �
;

j ¼ 0: ð34Þ

When n = l + 1, then

GðrÞ ¼
2

�3
� r3 ð2l þ 1Þ

3ð2l þ 4Þ
�
ð�rÞð2l þ 1Þ

4ð2l þ 5Þ
þ
ð�rÞ2ð2l þ 1Þ

10ð2l þ 6Þ
� . . .

� �
;

j ¼ 1: ð35Þ

Expressions (34) and (35) both have non-zero terms in r3,

which creates singularities in the second derivatives d2r3/dq2,

where q = x, y, z. This can be circumvented as discussed below.

Define A(r) as follows:

AðrÞ ¼
dGðrÞ

r dr

� �
¼
ð�1Þjþ1

�j

X1
k¼j

ð��rÞkð2l þ 1Þ

ðk� jÞ!ð2l þ 3þ kÞ
: ð36Þ

Alternatively,

AðrÞ ¼ �rj
X1
k¼0

ð��rÞkð2l þ 1Þ

k!ð2l þ 3þ jþ kÞ
: ð37Þ

Note that A(r) is well behaved for small r for all l and n. Note

also that (37) has a non-zero term linear in r when j = 0 or j = 1.

These linear terms have implications for B(r).

Define B(r) as follows:

BðrÞ ¼
d

r dr

dGðrÞ

rdr

� �� �
¼

dAðrÞ

r dr

� �

¼
ð�1Þjþ1

�j�2

X1
k¼j�2

ð��rÞkðkþ 2Þð2l þ 1Þ

ðkþ 2� jÞ!ð2l þ 5þ kÞ
: ð38Þ

Alternatively,

BðrÞ ¼ �rj�2
X1
k¼0

ð��rÞkðkþ jÞð2l þ 1Þ

k!ð2l þ 3þ jþ kÞ
: ð39Þ

Note that the first term vanishes in the sums (38) and (39)

when j = 0, giving

BðrÞ ¼
�

r

X1
k¼0

ð��rÞkð2l þ 1Þ

k!ð2l þ 4þ kÞ
; j ¼ 0: ð40Þ

Alternatively,

BðrÞ ¼
�ð2l þ 1Þ

rð2l þ 4Þ
� �2

X1
k¼0

ð��rÞkð2l þ 1Þ

ðkþ 1Þ!ð2l þ 5þ kÞ
; j ¼ 0: ð41Þ

If n = l + 1 then equation (39) can be expressed as follows:

BðrÞ ¼
�ð2l þ 1Þ

rð2l þ 4Þ
þ �

X1
k¼0

ð��rÞkðkþ 2Þð2l þ 1Þ

ðkþ 1Þ!ð2l þ 5þ kÞ
; j ¼ 1:

ð42Þ

The terms r�1 in (41) and (42) require special care when r = 0.

They become infinite at the origin but are multiplied by

angularly dependent factors which are zero at the origin. It

turns out in these cases that the zeros are of higher order than

infinity so their product is zero.

The first and partial second derivatives are then straight-

forward:

@GðrÞ

@x
¼

dGðrÞ

dr

� �
@r

dx

� �
¼ xAðrÞ: ð43Þ

Similarly,

@GðrÞ

@y
¼ yAðrÞ ð44Þ

and

@2GðrÞ

@x2
¼

@½xAðrÞ�

@x

� �
¼ AðrÞ þ x2BðrÞ: ð45Þ

Similarly,

@2GðrÞ

@x@y
¼

@½xAðrÞ�

@y

� �
¼ xyBðrÞ: ð46Þ

These formulae should be used for small �r.

At r = 0, derivatives are much simplified:

Gð0Þ ¼
ðjþ 1Þ!

�jþ2
ð47Þ

@GðrÞ

@x

� �
0

¼
@GðrÞ

@y

� �
0

¼
@GðrÞ

@z

� �
0

¼ 0 ð48Þ

@2GðrÞ

@x2

� �
0

¼
@2GðrÞ

@y2

� �
0

¼
@2GðrÞ

@z2

� �
0

¼ Að0Þ ¼
�ð2lþ1Þ
ð2lþ3Þ when j ¼ 0

0 when j > 0

(
ð49Þ

@GðrÞ

@x@y

� �
0

¼
@GðrÞ

@x@z

� �
0

¼
@GðrÞ

@y@z

� �
0

¼ 0: ð50Þ

4. Applications of the method

Calculations of electrostatic properties from the Hansen–

Coppens pseudoatom formalism were performed using the

newly derived formulae encoded in the new version of

XDPROP, part of the XD package. To test the new formulae

both theoretical and experimental data were used.

4.1. ESP, EF and EFG at nuclear positions in the formamide
molecule from theoretical data

In a first example, a formamide molecule with a geometry

extracted from the crystal of formamide (Stevens, 1978) was
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chosen. Theoretical calculations were performed with the

Gaussian03 (2004) suite of programs at the density-functional

(Hohenberg & Kohn, 1964) level of theory using the 1996

exchange and correlation functionals of Perdew, Burke &

Ernzerhof (1996, 1997) (PBE) and 6-31G** (Hariharan &

Pople, 1973), aug-cc-pVDZ (Dunning, 1989; Kendall et al.,

1992) and aug-cc-pVTZ (Dunning, 1989; Kendall et al., 1992)

series of basis sets (labeled as PBE/6-31G**, PBE/aug-cc-

pVDZ and PBE/aug-cc-pVTZ, respectively).

For the PBE/6-31G** calculation, complex static valence-

only structure factors in the range of 0 < sin �/� < 1.1 Å�1 were

obtained by analytic Fourier transform of the molecular

charge densities for reciprocal-lattice points corresponding to

a pseudocubic cell with 30 Å edges. These data were fitted in

terms of pseudoatom parameters as given in the Hansen–

Coppens pseudoatom model [equation (8)] using the XD

program suite (Koritsanszky et al., 2003). Phases of all reflec-

tions were reset to the theoretical values after each refinement

cycle. Both radial screening factors (�, �0) were refined inde-

pendently for each atom, with the exception of the chemically

equivalent H atoms which shared the same � and �0 param-

eters. The multipolar expansion was truncated at the hexa-

decapolar level (lmax = 4) for the non-H atoms and at the

quadrupolar level (lmax = 2) for H atoms, for which only bond-

directed functions of l, m = 1, 0 and 2, 0 were refined. In order

to reduce the number of least-squares variables, the following

local-symmetry constraints were imposed: mm2 symmetry for

N and m symmetry for O and C atoms. A molecular electro-

neutrality constraint was also applied. Refinement of valence-

only structure factors yield an R factor of 3%, with a ratio of

the number of calculated structure factors to the number of

refined variables of 10502.

Tables 3–5 list the ESP, EF and EFG values at the nuclear

positions as obtained directly from theoretical calculations

and from the pseudoatom model, the latter labeled XD/PBE/

6-31G**. Electrostatic properties at the nuclear positions from

theoretical data were calculated with the Gaussian03 program.

Agreement in all quantities is very good, taking into account

the differences between Gaussian- and Slater-type functions

and the fact that the projection of the Gaussian density onto

the pseudoatom model is not perfect. Especially important is

the fact that the asphericity of the EFG tensor at the nuclear

positions of the H atoms is reproduced rather well despite

small differences in each of the values. In general, the

pseudoatom model gives slightly higher values of all proper-

ties at the nuclear positions compared to the Gaussian

calculations. This is attributed to the different behavior of

Gaussian- and Slater-type functions near r = 0, as well as the

imperfect fit of the theoretical data.

Acta Cryst. (2006). A62, 400–408 Anatoliy Volkov et al. � Aspherical pseudoatom model 405

research papers

Table 3
ESP and vector components of the EF at the nuclear positions in
formamide (atomic units) from different methods.

All components in this and the following tables refer to a global Cartesian
coordinate system (atomic coordinates listed in Table 6, Appendix A)

Electric field

Potential X Y Z

O(1)
PBE/6-31G** �22.34 �0.096 �0.051 0.001
PBE/aug-cc-pVDZ �22.35 �0.065 �0.033 0.001
PBE/aug-cc-pVTZ �22.36 �0.031 �0.016 0.000
XD/PBE/6-31G** �22.42 �0.274 �0.174 0.004

N(2)
PBE/6-31G** �18.30 �0.002 �0.001 �0.001
PBE/aug-cc-pVDZ �18.32 �0.004 0.001 �0.001
PBE/aug-cc-pVTZ �18.32 �0.005 0.002 �0.001
XD/PBE/6-31G** �18.44 �0.019 �0.009 0.000

C(3)
PBE/6-31G** �14.65 �0.019 0.006 0.001
PBE/aug-cc-pVDZ �14.66 �0.015 0.010 0.002
PBE/aug-cc-pVTZ �14.67 �0.013 �0.001 0.001
XD/PBE/6-31G** �14.76 �0.026 0.001 0.000

H(4)
PBE/6-31G** �1.00 0.021 0.006 0.000
PBE/aug-cc-pVDZ �0.98 0.027 0.011 0.000
PBE/aug-cc-pVTZ �0.99 0.018 0.004 0.000
XD/PBE/6-31G** �1.00 0.013 �0.010 0.000

H(5)
PBE/6-31G** �1.00 0.005 �0.017 0.000
PBE/aug-cc-pVDZ �0.98 0.006 �0.024 0.000
PBE/aug-cc-pVTZ �0.99 0.005 �0.013 0.000
XD/PBE/6-31G** �1.02 0.001 0.010 0.000

H(6)
PBE/6-31G** �1.10 0.005 0.026 �0.001
PBE/aug-cc-pVDZ �1.07 0.005 0.031 �0.001
PBE/aug-cc-pVTZ �1.09 0.006 0.021 �0.001
XD/PBE/6-31G** �1.09 0.003 0.022 �0.007

Table 4
Components of the EFG tensor at the nuclear positions in formamide
(atomic units) from different methods.

XX XY XZ YY YZ ZZ

O(1)
PBE/6-31G** �1216 �1.02 0.02 �1215 0.015 �1216
PBE/aug-cc-pVDZ �1246 �1.00 0.02 �1245 0.014 �1246
PBE/aug-cc-pVTZ �1248 �1.00 0.02 �1247 0.014 �1249
XD/PBE/6-31G** �1306 �0.80 �0.03 �1305 0.047 �1306

N(2)
PBE/6-31G** �798 �0.023 �0.032 �798 �0.004 �797
PBE/aug-cc-pVDZ �819 �0.024 �0.031 �819 �0.004 �818
PBE/aug-cc-pVTZ �821 �0.018 �0.031 �821 �0.003 �819
XD/PBE/6-31G** �863 �0.015 �0.012 �864 �0.013 �863

C(3)
PBE/6-31G** �492 0.050 0.000 �492 0.001 �493
PBE/aug-cc-pVDZ �505 0.053 0.000 �505 0.000 �506
PBE/aug-cc-pVTZ �507 0.055 0.000 �507 0.001 �507
XD/PBE/6-31G** �534 0.048 �0.002 �534 �0.012 �535

H(4)
PBE/6-31G** �1.95 �0.28 �0.012 �1.78 �0.008 �1.49
PBE/aug-cc-pVDZ �1.83 �0.28 �0.012 �1.66 �0.008 �1.38
PBE/aug-cc-pVTZ �2.00 �0.28 �0.012 �1.83 �0.008 �1.55
XD/PBE/6-31G** �2.29 �0.30 �0.012 �2.09 �0.009 �1.82

H(5)
PBE/6-31G** �1.54 0.048 �0.002 �2.11 0.002 �1.47
PBE/aug-cc-pVDZ �1.43 0.048 �0.001 �2.00 0.002 �1.37
PBE/aug-cc-pVTZ �1.59 0.048 �0.001 �2.16 0.002 �1.53
XD/PBE/6-31G** �1.87 0.049 �0.001 �2.46 0.002 �1.82

H(6)
PBE/6-31G** �1.68 0.009 0.000 �2.11 �0.008 �1.66
PBE/aug-cc-pVDZ �1.50 0.011 0.000 �1.96 �0.008 �1.48
PBE/aug-cc-pVTZ �1.72 0.010 0.000 �2.15 �0.007 �1.71
XD/PBE/6-31G** �2.00 0.007 �0.001 �2.45 �0.003 �1.99



4.2. EF in the crystal structure of formamide from theoretical
data

Note that, for an isolated molecule, the electric field at each

nuclear position in the solid state must be zero once equi-

librium is established. However, the molecules ‘extracted’

from the crystal are not at equilibrium, therefore any calcu-

lation of the isolated molecule with the crystal geometry

results in significant electric forces acting on the nuclei. These

forces should be ‘compensated’ in the crystal by those of the

environment generated by the packing (of course after a final

relaxation of the molecular electron density).

Fig. 1 shows the projection of the electric field in the O—

C—N plane of the ‘central’ formamide molecule due to the

eight nearest-neighbor molecules as found in the crystal

structure of formamide. The electric field was plotted with the

program PlotMTV (Toh, 1995a) using the MTV plot data

format (Toh, 1995b). The contribution of the ‘central’ mol-

ecule to the electric field is omitted. In general, the external

electric field is directed from the ‘negative’ part of the central

molecule (i.e. the O atom) towards the ‘positive’ end (the

amino group), and has nearly the same direction as the dipole

moment of formamide. Indeed, molecules in crystals tend to

orient themselves so as to achieve electrostatic stabilization.

By the same token, the external electric field tends to polarize

the central molecule so as to increase its dipole moment and

enhance this electrostatic stabilization. Our own fully periodic

(Saunders et al., 1998; Gatti, 1999) calculations at the B3LYP/

6-31G** level of theory (Becke, 1988; Lee et al., 1988; Miehlich

et al., 1989; Becke, 1993) show that the molecular dipole

moment of formamide is increased to approximately

5.5 Debye in the solid state from about 4 Debye for the free

molecule in the crystal geometry.

4.3. Determination of the 57Fem nuclear quadrupole moment
from experimental X-ray data

The nuclear quadrupole moment Q(57Fem) cannot be

directly measured because of the short lifetime of the excited

nuclear state. However, Q(57Fem) is directly related to the

Mössbauer quadrupole splitting �EQ:

�EQ ¼
1
2 eQð57FemÞVzz 1þ

	2

3

� �1=2

; ð51Þ

where e is the elementary charge, Vzz is the largest eigenvalue

of the traceless EFG tensor

jVzzj> jVyyj> jVxxj ð52Þ

and 	 is the asymmetry parameter defined as

	 ¼
Vxx � Vyy

Vzz

: ð53Þ

In order to obtain the three principal components of the EFG

tensor defined by expression (5), the tensor must first be

converted to its traceless form and then diagonalized. Note

that �EQ and Q(57Fem) are usually given in Doppler-speed

units of mm s�1 and m2, respectively, while the EFG tensor

components are usually reported in e Å�3 or atomic units. The

conversion between diffraction and spectroscopic units is

discussed in detail by Coppens (1997, pp. 223–224).
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Figure 1
EF vectors in the N2—C3—O1 plane of the ‘central’ formamide molecule
due to the eight nearest neighbors in the crystal (the contribution of the
‘central’ molecule to EF is not included). Subscripts of atom names
identify the neighboring molecules. Vectors with magnitudes larger than
0.15 e Å�2 are omitted for clarity. The size of the map is 6 � 6 Å with a
grid spacing of 0.2 Å.

Table 5
Eigenvalues of the EFG tensor at the nuclear positions in formamide
(atomic units) from different methods.

�1 �2 �3

O(1)
PBE/6-31G** �1217 �1216 �1214
PBE/aug-cc-pVDZ �1247 �1246 �1244
PBE/aug-cc-pVTZ �1249 �1249 �1246
XD/PBE/6-31G** �1306 �1306 �1305

N(2)
PBE/6-31G** �798 �798 �797
PBE/aug-cc-pVDZ �819 �819 �818
PBE/aug-cc-pVTZ �821 �821 �819
XD/PBE/6-31G** �864 �863 �863

C(3)
PBE/6-31G** �493 �492 �492
PBE/aug-cc-pVDZ �506 �505 �505
PBE/aug-cc-pVTZ �507 �507 �507
XD/PBE/6-31G** �535 �534 �534

H(4)
PBE/6-31G** �2.16 �1.57 �1.49
PBE/aug-cc-pVDZ �2.04 �1.45 �1.38
PBE/aug-cc-pVTZ �2.21 �1.62 �1.55
XD/PBE/6-31G** �2.50 �1.88 �1.82

H(5)
PBE/6-31G** �2.11 �1.54 �1.47
PBE/aug-cc-pVDZ �2.00 �1.42 �1.37
PBE/aug-cc-pVTZ �2.17 �1.59 �1.53
XD/PBE/6-31G** �2.46 �1.87 �1.82

H(6)
PBE/6-31G** �2.11 �1.68 �1.66
PBE/aug-cc-pVDZ �1.96 �1.50 �1.48
PBE/aug-cc-pVTZ �2.15 �1.72 �1.71
XD/PBE/6-31G** �2.45 �2.00 �1.99



Experimental X-ray data for iron pentacarbonyl Fe(CO)5

were taken from the recent low-temperature (100 K) study of

Farrugia & Evans (2005). Following the procedure of Su &

Coppens (1996), the EFG tensor at the Fe nucleus is parti-

tioned into its peripheral E
peripheral
�� and central Ecentral

�� contri-

butions:

E��ðrÞ ¼ Ecentral
�� ðrÞ þ E

peripheral
�� ðrÞ: ð54Þ

The central component Ecentral
�� includes only the contribution

of the Fe pseudoatom, while the peripheral component

E
peripheral
�� includes both electronic and nuclear contributions of

all other atoms. Because the Hansen–Coppens pseudoatom

formalism uses a flexible valence shell but assumes a frozen

core configuration, it is important to include the Sternheimer

functions (Sternheimer, 1986) 
core
1 and Rcore in order to

properly describe the shielding/antishielding of the EFG at the

nuclear position due to the polarization induced in the atomic

density by the quadrupolar components of the density distri-

bution (Su & Coppens, 1996). Sternheimer functions are

therefore included in expression (54) as

E��ðrÞ ¼ Ecentral
�� ðrÞð1� RcoreÞ þ E

peripheral
�� ðrÞð1� 
core

1 Þ: ð55Þ

Values of Rcore = 0.0730 and 
core
1 = �8.933 as derived by Su &

Coppens (1996) for the neutral Fe atom are used in the

present study.

The recent experimental value of �EQ = +2.51 mm s�1 in

Fe(CO)5 was taken as the reference. This value agrees very

well with the theoretical value of 2.54 mm s�1 obtained from

density-functional (B3LYP) calculations performed on the

gas-phase optimized geometry of Fe(CO)5 (Halvin et al., 1998;

Zhang et al., 2002). The reference value gives Q(57Fem) =

0.11 � 10�28 m2 without Sternheimer correction and

0.12 � 10�28 m2 after taking into account shielding/anti-

shielding effects of the core. These values agree very well with

those previously reported by Su & Coppens for iron pyrite

FeS2, sodium nitroprusside Na2[Fe(NO)(CN)5]	2H2O and

Fe(TPP)(pyridyl)2, but slightly smaller than the earlier value

of 0.14 (2) � 10�28 m2 determined (omitting shielding/anti-

shielding effects of the core) by Tsirel’son et al. (1987), based

on studies of sodium nitroprusside and Fe2O3. By averaging

over three compounds, Su & Coppens obtained values of

Q(57Fem) = 0.09–0.10 � 10�28 m2 and 0.11–0.12 � 10�28 m2

from uncorrected and corrected calculations, respectively.

When our value is included in the average, the mean corrected

value of Q(57Fem) becomes 0.12 � 10�28 m2 with a standard

uncertainty of 0.02. It is within three standard uncertainties of

the most precise up-to-date determination of Q(57Fem) =

0.16 � 5% � 10�28 m2 reported by Dufek et al. (1995) based

on the comparison of spectroscopic values with EFG’s from

linearized augmented-plane-wave (LAPW) theoretical densi-

ties on a series of solids. It is interesting to note that all four

recent experimental X-ray charge-density studies consistently

show lower values of Q(57Fem) than combined theoretical/

spectroscopic studies. This discrepancy merits further study.

5. Concluding remarks

New practical formulae for calculation of the electrostatic

potential (ESP), electric field (EF) and the electric field

gradient (EFG) from the aspherical pseudoatom model are

presented, which allow computation in regions near the

nuclear centers. As real spherical harmonic density functions

dlm�ð�Þ are discontinuous at the origin and thus non-differ-

entiable, direct implementation of expressions containing

dlm�ð�ÞIðn; l; �rÞ in the evaluation of the electrostatic

potential and its derivatives in this region is not possible.

Instead the expressions have been reformulated in the form

½dlm�ð�Þr
l�½r�lIðn; l; �rÞ�, which eliminates this problem.

Special care is required when treating the integral r�lIðn; l; �rÞ

when n = l or n = l + 1.

The expressions are applied to a theoretical density of

formamide and to the derivation of the 57Fem nuclear quad-

rupolar moment from experimental X-ray diffraction data. For

formamide, the ESP, EF and EFG at the nuclear positions,

calculated with the new expressions and a projection of PBE/

6-31G** densities onto the Hansen�Coppens pseudoatom

model, agree very well with theoretical values calculated

directly from the wavefunction. Small differences observed

are attributed to the different behavior of Slater- and Gaus-

sian-type functions as r! 0 and to imperfections in the fitting

procedure.

The new expressions have further been applied in the

detailed visualization of the electric field exerted on the

‘central’ formamide molecule by the crystal environment. This

was simulated by the electric fields of the eight closest

neighboring molecules and omitting the contribution of the

‘central’ molecule. The direction of the EF in the central

molecule almost exactly coincides with the direction of the

molecular dipole moment of the formamide molecule before

its incorporation into the crystal, demonstrating the impor-

tance of the electrostatic forces in determining the crystal

packing. The coincidence of the dipole moment and electric

field directions provides a direct explanation for the

enhancement of molecular dipole moments in crystals in

accord with results of numerous experimental and theoretical

studies.

Determination of the nuclear quadrupole moment of iron

from the experimental X-ray diffraction data of Fe(CO)5

yields a value of Q(57Fem) = 0.12 � 10�28 m2, after taking into

account shielding/antishielding effects of the core, which is in

excellent agreement with previous X-ray studies by Su &

Coppens (1996). However, this value is slightly smaller than

the generally accepted value of 0.16 � 5% � 10�28 m2

obtained from combined theoretical/spectroscopic studies

(Dufek et al., 1995). The fact that X-ray determinations of

Q(57Fem) using different crystals and data sets consistently

yield slightly lower values than those obtained from theor-

etical and spectroscopic studies requires further examination.

Note that the formulae presented for calculation of the ESP

have already been used in our previous studies on the calcu-

lation of the electrostatic interaction energies in molecular

crystals (Volkov et al., 2004, 2006). Numerical quadrature
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evaluation of the two-centered Coulomb integral in the exact

potential and multipole moment (EPMM) method requires an

accurate yet efficient evaluation of the ESP at any r.

Application of the new method to topological analysis of

the ESP, as recently performed by Bouhmaida et al. (2002), is

currently being pursued.

APPENDIX A
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Table 6
Cartesian coordinates (Å) of the atoms in formamide used in all
calculations.

Atom x y z

O(1) �1.1985900 �0.2390700 0.0036000
N(2) 1.0736400 �0.1651500 �0.0015000
C(3) �0.1305900 0.3877800 �0.0088500
H(4) 1.8732000 0.4369500 0.0209100
H(5) 1.1409300 �1.1690400 0.0014700
H(6) �0.1574100 1.4741700 0.0124500
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The determination of relevant physical properties from the aspherical

pseudoatom model and comparison with independent experimental

and/or computational results remains a key objective of many

modern charge-density studies based on high-resolution low-

temperature X-ray diffraction data. The recent paper published by

Volkov, King, Coppens & Farrugia [Acta Cryst. (2006), A62, 400–408]

(referred to as VKCF in the following) represents an important step

towards realizing this goal in routine charge-density analyses. It

presented new and improved formulae for calculating the electro-

static potential (ESP), electric field (EF) and electric field gradient

(EFG) from the aspherical pseudoatom model, with applications

made to both experimental and model sets of structure factors. Of

considerable practical importance, these expressions have been

incorporated in a new version of XDPROP, part of the XD package

now in widespread use (Koritsanszky et al., 2003). This Letter aims to

complement the work described by VKCF by providing a broader

perspective on some of the issues raised in that work, and

commenting on some of the results presented by them.

VKCF write (p. 401) that ‘Various methods for calculating the ESP

from X-ray diffraction data have been described and consequently

applied in the literature. These methods can basically be split into two

very different groups: (i) directly from experimentally measured

structure factors (Bertaut, 1978; Schwarzenbach & Thong, 1979;

Stewart, 1979) and (ii) from static models of the electron density.’ It is

important to recognize that the group identified as (i) is not restricted

to experimental measurements, and can be applied much more

broadly to any set of valid structure factors (e.g. static, computed

from the aspherical pseudoatom model, as discussed further below).

Moreover, there is an intimate relationship between approaches (i)

and (ii), and many properties in the crystal are most advantageously

computed via a combination of the two approaches. This aspect of the

determination of the ESP, EF and EFG from X-ray diffraction data

was clearly outlined several decades ago by R. F. Stewart, and

Stewart’s paper cited by VKCF discussed the determination of ‘inner

moments’ (i.e. averages that involve negative powers of r, as opposed

to ‘outer moments’ such as the dipole and quadrupole moments,

which involve zero and positive powers of r) from X-ray diffraction

data, with a focus on Fourier summation techniques (Stewart, 1979).

That work presented comprehensive expressions for the determina-

tion of the ESP, EF, EFG, charge density (i.e. including nuclei),

gradient of the EFG and gradient of the charge density. Importantly,

it also provided details of the method (which can be generalized to

inner moments of higher order), discussed the origin term for the

ESP, the finite resolution of experimental data (and hence conver-

gence behaviour of the various properties and the effects of series

termination), and observed that results based on Fourier coefficients

incorporating vibrational (or thermal) averaging of deformation

electron densities closely approximate static results in regions far

from the nuclei.

A number of papers that emerged from Stewart’s group in the

early 1980s outlined Fourier summation, direct space and combined

strategies for the computation of the ESP, EF and EFG, with exam-

ples drawn from pseudoatom multipole fits to experimental data for

imidazole and 9-methyladenine measured by Craven’s group at the

University of Pittsburgh (Spackman & Stewart, 1981; Stewart, 1982;

Spackman & Stewart, 1984). Later applications of this kind included

a combined Fourier/direct-space approach to mapping the total

ESP in sodium zeolite A (Spackman & Weber, 1988), and a detailed

presentation of ESP maps for molecules and molecular clusters of

urea, imidazole, 9-methyladenine and benzene (Stewart, 1991). All of

these results were based on algorithms developed by Stewart that

were unfortunately not published at the time. They were incor-

porated into early versions of VALRAY, and the 1983 version of

VALRAY implemented the entire suite of Fourier, direct-space and

combined approaches to the computation of the ESP, EF and EFG for

isolated molecules, clusters or the crystal. Stewart’s expressions for

the direct-space computation of the ESP from the parameters of the

pseudoatom model were also incorporated into MOLPOT, part of

the series of programs known as the ‘POP procedure’ (He, 1984;

Craven et al., 1987; Craven, 1988). MOLPOT in turn formed the basis

for ELECTROS (Ghermani et al., 1992), and Ghermani et al. (1993)

have published an independent derivation of the relevant expressions

for the ESP.

Su & Coppens (1992) published the first complete derivation and

expressions for computing not only the ESP but also the EF and EFG

from pseudoatom model parameters, including penetration (periph-

eral) contributions, based on a generalization of the Fourier convo-

lution approach used by Epstein & Swanton (1982). Their

expressions were exceedingly complex, and according to VKCF

involved ‘the evaluation of fairly complicated one-electron two-

centre integrals’, and further comments in the recent paper suggest

that their incorporation into the XD suite was never fully satisfactory.

The VKCF paper presents a careful review of the derivation of the

expressions published by Ghermani et al. (1993) and, instead of the

Green function approach used by Ghermani et al., VKCF expand

jr� r0j�1 directly in real spherical harmonics, along the lines of

previous work (Bentley, 1981; te Velde, 1990; De Bondt et al., 1993; te

Velde et al., 2001).

Stewart’s detailed derivation for the ESP was published in

conjunction with Craven in a study on �-aminobutyric acid (Stewart

& Craven, 1993). It presents Stewart’s beautiful and elegant deriva-

tion of the same expressions published by others, including the closed



forms of equations (22) and (23) in VKCF, and based on the Fourier

convolution approach. The key difference between this and other

derivations is that Stewart’s makes use of his intimate knowledge of

Bessel functions and their inter-relationships. This is more than a

mathematical curiosity; it enabled relatively straightforward exten-

sion of the same approach to the derivation of expressions for the EF

and EFG, yielding separate expressions for all three components of

the EF, and for all five components of the traceless EFG tensor. As

noted above, these latter derivations and expressions were never

published in the peer-reviewed literature, but they were incorporated

in Appendix C of the VALRAY manual in 2000 (Stewart et al., 2000).

As that manual has not been widely circulated, in the interests of

wider dissemination of those important results, that Appendix is

provided in PDF format as supplementary material accompanying

this communication.1

This Letter concludes with some remarks pertaining to the results

and discussion in x4 of the paper by VKCF. The first concerns the EF,

and in particular the map of EF projected onto the plane of the

formamide molecule (Fig. 1 of VKCF), based on a pseudoatom

modelling of theoretical structure factors. The contribution of the

‘central’ molecule has been omitted from the map and, as VKCF

emphasize, the resulting map very nicely demonstrates how the

‘central’ molecule experiences an EF due to surrounding molecules

that is closely parallel to its own dipole moment vector. This is an

important result, and the strategy used to obtain it, namely

subtracting the contribution from a particular molecule (or atom or

ion), deserves to be used more widely. In light of the comments

above, it is worth noting that the map presented by VKCF is based on

a direct-space summation of contributions from only the eight nearest

neighbours in the crystal. The computation of the EF in the crystal

due to point dipoles is well known to require lattice summation

techniques to achieve convergence (Cummins et al., 1976), and that is

one reason why Stewart advocated combined Fourier/direct-space

approaches to computing some properties, and these combined

approaches are entirely analogous to the Ewald approach used to

achieve rapid convergence of lattice sums. Thus, computation of the

ESP and EF in the crystal are best achieved with an approach

involving both summation over appropriate Fourier coefficients (e.g.

those due to the deformation density) as well as a direct-space

calculation (e.g. over spherical atoms, including nuclei).

Regarding the EFG, VKCF write (p. 401): ‘Several methods for the

calculation of the ESP/EFG were proposed by Brown & Spackman

(1994)’, and ‘While giving more or less reasonable results, these

methods are either too computationally demanding or have conver-

gence problems with Fourier sums.’ These comments rather miss the

point of the calculations presented in that paper. We noted in that

paper that, at that time, the direct-space EFG code in VALRAY had

never been tested fully, and the purpose of the various computational

routes to the EFG was simply to validate that code in VALRAY (not

the algorithms). Thus, we compared results and convergence beha-

viour of the direct-space EFG with: (i) a combined Fourier/direct-

space approach as described above for the EF; and (ii) numerical

second differentiation of both the direct-space and combined Fourier/

direct-space approaches to the ESP. It was never our intention that

any approach other than the direct-space calculation be used to

compute the EFG from the pseudoatom model; we did locate minor

bugs and proceeded to validate the corrected code.

Also on p. 401, VKCF state that ‘the method of Su & Coppens only

allows calculation of the traceless EFG tensor at the nuclear posi-

tions’. Equation (1) of their paper, Poisson’s equation, relates the

Laplacian of the ESP to the electron density, and hence any code that

computes the electron density and the traceless EFG can also provide

the complete EFG tensor, although only the traceless EFG tensor is

relevant in the computation of quantities such as nuclear quadrupole

coupling constants measured in NMR or NQR experiments (Cohen

& Reif, 1957). In their comparison between EFG results derived from

pseudoatom modelling of theoretical structure factors for formamide

(labelled XD/PBE/6-31G** in their tables) and those directly from

the ab initio wavefunction (labelled PBE/6-31G**), VKCF use the

whole EFG tensor (i.e. not the traceless tensor), which appears to

obscure any agreement between the two. Although VKCF (p. 405)

conclude that agreement between the two is ‘very good, taking into

account the differences between Gaussian- and Slater-type func-

tions’, this reflects the systematic differences between electron

densities at the nuclei. Converting their results (reported in their

Tables 4 and 5) to traceless form reveals that for H atoms their XD/

PBE/6-31G** results are in almost perfect agreement with those

obtained directly from the wavefunction, and that (to only the single

significant figure available) a similar result holds for the C atom, but

agreement gets progressively worse for N and O, atoms with more

contracted electron densities. These conclusions are in excellent

agreement with our own detailed model studies on a number of

molecular crystals (Spackman & Byrom, 1996; Spackman et al., 1999),

with our earlier work on benzene and corundum (Brown &

Spackman, 1994), and they clearly echo conclusions by Epstein et al.

(1977), based on generalized scattering factor (g.s.f.) expansions for

diatomic molecules.

A final comment concerns the use of Sternheimer corrections by

VKCF in their computation of the EFG tensor at the Fe nucleus

based on multipole modelling of X-ray data for iron pentacarbonyl.

The use of Sternheimer corrections was never discussed by Stewart,

nor in our own work, yet appears in analyses by Coppens and co-

workers [for a detailed discussion and summary of many results, see

Section 10.3 of Coppens’s monograph (Coppens, 1997), and Section

VII.C of the review article by Koritsanszky & Coppens (2001)], and

has been used without question in recent analyses (Dahaoui et al.,

2001). However, the use of Sternheimer corrections deserves to be

questioned, as they were introduced to describe so-called ‘core

polarization’ at a time when EFGs in solids were estimated using

point charges on atomic sites. VKCF incorporate both a shielding

factor, Rcore, and an antishielding factor, �1, resulting in an expres-

sion for the EFG tensor components for the Fe nucleus,

E��ðrÞ ¼ 0:927Ecentral
�� ðrÞ þ 9:933E

peripheral
�� ðrÞ. Thus, the contribution

from the nucleus-centred quadrupole functions is reduced by ~7%,

and the (generally much smaller) peripheral (penetration) contri-

bution is enhanced by an order of magnitude by including these

correction factors. Tsirelson & Ozerov (1996) have argued that the

antishielding correction should only be included when the peripheral

term is approximated by a point-charge model, and this makes a great

deal of sense. It is also arguable that even the shielding contribution

should be included. Coppens (1997) argued that its use takes into

account the fact that the pseudoatom model uses a frozen core

approximation, and thus cannot describe core polarization effects.

However, Schwarz, Blaha and co-workers have performed accurate

all-electron theoretical calculations of EFGs in a variety of complex

solids using a full-potential linearized augmented plane-wave method

(FP LAPW) and make no use of any Sternheimer corrections (Blaha

et al., 1985; Schwarz & Blaha, 1992; Dufek et al., 1995; Blaha et al.,

2000; Schwarz & Blaha, 2003). Most importantly, their calculations
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provide a breakdown of the EFG tensors into contributions from

semi-core (SC) and valence states. For a series of Al2SiO5 poly-

morphs (Iglesias et al., 2001), they conclude that the ‘main contri-

bution to the EFG comes from the distortion from spherical

symmetry of the respective valence p electrons’, although for Al and

Si important contributions come from the low-lying semi-core states

on Al (2p) and O (2s). Similarly, results for a series of Fe-containing

solids indicate that ‘usually the Fe 3p SC state contribution is less

than 10% of the valence part’ (Dufek et al., 1995). This is not

intended to suggest that core polarization is negligible, but it seems

likely that more important factors currently hamper determination of

accurate EFG tensors for heavy atoms from X-ray diffraction data

(e.g. a complete and accurate description of the thermal motion of the

nucleus, limited flexibility of radial functions in the pseudoatom

model, and inherent limits on the resolution of the X-ray diffraction

data), and the use of Sternheimer shielding factors is likely to obscure

any attempts at improvement in these areas.

It is worth reiterating that the new expressions and algorithms

presented by VKCF and especially their incorporation into XD – now

used in more than three-quarters of published experimental charge-

density studies – represents an important step towards the routine

determination and presentation of ESP, EF and EFG results based on

modern charge-density studies. In particular, it would be a suitably

fitting outcome of the incorporation of the new expressions by VKCF

into XD if attention could be focused on the EFG tensor once again,

with the aim of seeking quantitative agreement with NQR results

where possible, as advocated by Stewart (1977) nearly 30 years ago.

I am most indebted to Bryan Craven and Joseph Ho (Xiao-Min

He) for their comments regarding the incorporation of Stewart’s

algorithms into the POP series of programs at the University of

Pittsburgh. Thanks are also due to Henning Sørensen, who kindly

confirmed for me the contents of various versions of the VALRAY

manual.
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