#### m09.p07

### X-Ray Structure of a Bound Phosphonate Transition State Analog and Enantioselectivity of Candida rugosa lipase toward Chiral Carboxylic Acids

P. Grochulski<sup>a</sup>, I.J. Colton<sup>b</sup>, R.J. Kazlauskas<sup>c</sup>

<sup>a</sup>Canadian Light Source, University of Saskatchewan, 101 Perimeter Road, Saskatoon SK S7N 0X4 Canada; <sup>b</sup>McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montréal, QC H3A 2K6 Canad; <sup>c</sup>University of Minnesota, Department of Biochemistry, Molecular Biology & Biophysics & The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108 USA E-mail: pawel.grochulski@lightsource.ca

## Keywords: protein-ligand complexes, enzyme catalysis, chirality

Candida rugosa lipase (CRL) resolves chiral aryloxy- and arylpropionic acids with moderate to high enantioselectivity [1]. To understand how CRL distinguishes between enantiomers, we determined the X-ray crystal structure of a transition state analog for a typical enantiomer of a chiral carboxylic acid ester, methyl α-methoxyphenyl acetate, 1, covalently linked to CRL. Purified CRL shows moderate enantioselectivity (E = 23) toward this chiral acid favoring the (S)-enantiomer. To prepare a transition state analog that mimics reaction of the fast reacting enantiomer, we prepared inactivator  $(R_{\rm C}, R_{\rm P}S_{\rm P})$ -2. An X-ray crystal structure of CRL containing the covalently linked transition state analog shows the phenyl ring in the hydrophobic tunnel of the lipase, as proposed previously based on molecular modeling [1]. Phe344 and Ph415 crowd the region near the substrate stereocenter, suggesting that shape of the active site prevents binding the slow-reacting enantiomer in a catalytically productive orientation.

Previous x-ray crystal structures of enantiomers bound to enzymes show that their relative orientation is either an exchange of two substituent positions or, more commonly, a mirror image orientation [2]. Modeling will test both of these possibilities for the slow enantiomer of 1.

#### m09.p08

# SdsA1 from *P. aeruginosa*, defines a new mechanistic class of sulfatases

<u>Gregor Hagelueken</u><sup>a</sup>, Thorsten M. Adams<sup>b</sup>, Lutz Wiehlmann<sup>b</sup>, Ute Widow<sup>a</sup>, Harald Kolmar<sup>c</sup>, Burkhard Tümmler<sup>b</sup>, Dirk W. Heinz<sup>a</sup>, Wolf-Dieter Schubert<sup>a</sup>

"Division of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany. "Klinische Forschergruppe OE 6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany delemens-Schoepf-Institute for Organic Chemistry and Biochemistry, Darmstadt University of Technology, Petersenstrasse 22, D-64287, Darmstadt, Germany. E-mail: wds@gbf.de

#### Keywords: sulfatases, metalloenzymes, mechanisms

Pseudomonas aeruginosa exhibits a remarkable metabolic versatility allowing it to occupy a multitude of ecological niches. Strikingly, it is able to degrade and utilize biocidic sodium dodecyl-sulfate (SDS), the detergent of most commercial personal hygiene products. We identify SdsA1 of P. aeruginosa as a secreted SDS-hydrolase that allows the bacterium to utilize primary sulfates such as SDS as sole carbon or sulfur source. The crystal structure of SdsA1 reveals three distinct domains. The N-terminal catalytic domain with a binuclear Zn<sup>2+</sup> cluster is a new member of the metallo-β-lactamase fold family, the central dimerization domain ensures resistance to high concentrations of SDS, while the C-terminal domain provides a hydrophobic groove, presumably to recruit long aliphatic substrates. Crystal structures of apo-SdsA1, and complexes with a substrateanalog and products, indicate a novel enzymatic mechanism involving a water molecule indirectly activated by the Zn<sup>2+</sup> cluster.

<sup>[1]</sup> Ahmed, S. N.; Kazlauskas, R. J.; Morinville, A. H.; Grochulski, P.; Schrag, J. D.; Cygler, M. *Biocatalysis*, 1994, *9*, 209-225.

<sup>[2]</sup> Mezzetti, A.; Schrag, J. D.; Cheong, C. S.; Kazlauskas, R. J. Chem. Biol. 2005, 12, 427-437.