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Ca2Y2Cu5O10, a calcium yttrium cuprate, is the yttrium rich
end member of a homologous series of compounds with compo-
sition (Ca1-xYx)4Cu5O10 (0<x<0.5) [1]. According to the
chemical formula the formal charge of copper can be varied
between +2 and +2.4. The structure is incommensurate and
related to the structure of NaCuO2 [2]. In both case the central
structural elements are one dimensional Cu-O chains. According
to the x-ray experiments we found a Ca/Y disorder. Instead of
having 5 Na and 5 Cu positions in the quintupled supercell in
the case of NaCuO2 there are 4 Ca/Y and 5 Cu positions in the
supercell of Ca2Y2Cu5O10. Therefore Ca/Y positions and Cu-O
chains have to be rearranged and distorted. Single crystals were
grown in an optical floating zone furnace and were examined
by single crystal diffraction experiments (x-ray and neutron
scattering). Structure refinement was done with Shelxl-97 [3]
(supercell: P21/c, a=5.4730(10)Å, b=6.1801(10)Å,
c=14.081(2)Å, β=104.550(14)°, z=2) and 3+1dimensional with
Jana2000 [4]. As a result of the neutron experiment we got the
cell metrics of both composite parts and the associated q vectors.
One can describe one composite part as P21/c(α0λ)00
(a=5.474(5)Å, b=6.181(9)Å, c=2.,818(7)Å, β=104.87(15)°),
the other one as P21/m(α0λ)0s (a=5.458(5)Å, b=6.181(9)Å,
c=3.523(9)Å, β=104.24(15)°). The associated q vectors are
(-0.0177 0 0.8) and (0.0221 0 1.25). On the poster a detailed
description of the contents of the composite parts, positions
of the atoms and distortion of the Cu-O chain will be given.
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To describe symmetry of magnetic structures in terms of the
fibre bundles one needs in general two 3-dimensional spaces,
namely R3 and a vector space V3 . One needs also a corre-
sponding relationship between these two spaces. It is well-
known that the fibre bundles as a generalization of the Cartesian
product of two given spaces present the most general way to
relate them. As a result of such a relationship one obtains a
6-dimensional space E6. This space has the structure of a fibre
bundle with R3 as a base space and with V3 as a fibre. In such
a case R3 is the position space of the magnetic structure, while
V3 is spanned by the orthogonal unit vectors e1, e2, e3 and makes
the space of the magnetization vector. In the simplest case of
a trivial bundle the space E6 presents the Cartesian product of
the R3 and V3. In this formalism a magnetic structure can be
represented as a certain subspace S of E6. In terms of the fibre
bundles the subspace S is called the section of E6. Thus a certain
symmetry group of S determines the corresponding magnetic
symmetry group. Therefore the problem of formulating the
different magnetic symmetry groups consists in searching the
corresponding symmetry groups of S. Every such a symmetry
group has to conserve a given structure defined by the magne-
tization vector. Moreover a magnetic symmetry group in this
approach makes the structure group of the bundle E6. For the
illustration of the above approach a ferromagnetic, an antifer-
romagnetic, both different spiral magnetic structures and spin
waves as well as fan structures have been considered (see also
[1] where the different magnetic structures have been found
by the authors to be related with the values of certain topological
invariants). This approach can serve for the determination of
all the other magnetic symmetry groups as well as for the deter-
mination of the symmetry groups of all the other aperiodic
structures, like the modulated nonmagnetic structures, quasi-
crystals etc. On the other hand this approach can be treated as
a kind of the generalization of the wreath groups method by
Litvin [2, 3].
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