m19.p17

Effect of hydrostatic pressure up to 6 GPa on the crystal structures of ammonium and sodium hexafluorosilicates, $(NH_4)_2SiF_6$ and Na_2SiF_6 ; a phase transition in $(NH_4)_2SiF_6$ at 0.2-0.3 GPa.

<u>Tatyana Shakhtshneider</u>^{a,b}, Elena Boldyreva^{a,b}, Heidrun Sowa[°], Hans Ahsbahs[°]

^{a,b}Institute of Solid State Chemistry and Mechanochemistry, SB RAS, and REC-008, Novosibirsk State University, Novosibirsk, Russia. ^cPhilipps-University Marburg/Lahn, Germany. E-mail: shah@solid.nsc.ru

Keywords: polymorphism, high pressure phase transformations, powder diffraction

An in situ X-ray powder diffraction study has shown that cubic modification of $(NH_4)_2SiF_6$ (cryptohalite) at 0.2-0.3 GPa transforms irreversibly into a trigonal polymorph with cell parameters a = 5.78 Å and c = 4.78 Å, presumably - the previously known bararite, space group P-3m1. The choice of a pressuretransmitting liquid (methanol/ethanol/water mixture or poly(chlortrifluorethylene) oil) has no effect on the transition. In malladrite, Na₂SiF₆, no obvious phase transitions were observed, at least at pressures below 6 GPa, although some remarkable kinks in the Dc/c(P) and DV/V(P) were measured at about 3.5 GPa. The anisotropy of lattice strain in the highpressure phase of (NH₄)₂SiF₆ was measured up to 6 GPa and compared with that in the trigonal Na₂SiF₆. The pressure-in-duced changes in the packing of $(SiF_6)^2$ anions were analyzed, the changes in the IR-spectra of $(SiF_6)^2$ ions induced by increasing pressure and on decompression were measured and compared for trigonal $(NH_4)_2SiF_6$ and Na_2SiF_6 .

Acknowledgments: Financial support has been obtained from DRL, Alexander von Humboldt Foundation and DLR.

m19.p18

Low temperature phase transition in $BaCuSi_2O_6$

<u>Karine Sparta</u>^a, Michael Merz^a, Georg Roth^a, Raivo Stern^b, Radovan Cerny^c, Tsuyoshi Kimura^d

^aInstitut für Kristallographie, RWTH Aachen, Germany.^bNational Institute of Chemical Physics & Biophysics, Tallinn, Estonia.^cLaboratoire de Cristallographie, Geneva, Switzerland. ^dLos Alamos National Laboratory, Los Alamos, USA. E-mail: sparta@xtal.rwth-aachen.de

Keywords: spin gap, phase transitions, BaCuSi₂O₆

BaCuSi₂O₆ is a quasi two-dimensional spin gap compound crystallizing in a tetragonal layered structure [1,2]. The Cu²⁺ ions within the Cu₂Si₄O₁₂-layers are arranged in a square lattice, forming quasi-isolated Cu-Cu dimers parallel to the c axis; the interlayer magnetic coupling is very weak. BaCuSi₂O₆ has a spin-singlet dimerized quantum ground state with a spin gap D = 32 K [3]. It was already observed that BaCuSi₂O₆ undergoes a first order structural phase transition at 610 K, from the space group I4/mmm at high temperatures to the room temperature space group I4₁/acd [2]. We present evidence for a new first order structural phase transition towards a slightly incommensurate phase below 100 K from powder and single crystal X-ray diffraction measurements.

Room temperature structure of BaCuSi₂O₆. Left: Projection of the structure onto the (a,c) plane. Right: Projection of a Cu₂Si₄O₁₂-layer onto the (a,b) plane [2].

^[1] Boldyreva, E.; Shakhtshneider, T.; Sowa, H.; Ahsbahs, H. Z. Krist., submitted.

^[1] L.W. Finger, R.M. Hazen, R.J. Hemley, Am. Mineral. 74: 952-855 (1989).

^[2] K. Sparta, G. Roth, Acta Cryst. B 60: 491-495 (2004).

^[3] Y. Sasago, K. Uchinokura, A. Zheludev, G. Shirane, *Phys. Rev. B* 55: 8357-8360 (1997).