[6] B. Dadamoussa, H. Mousser, H. Patin et A. Darchen, A. Mousser et D. Grandjean, J. Soc. Alger. Chim., 1999, 9(1), 47-58.

MS15 P13

Structures of Some Hydroxysalicylaldehyde Schiff Bases <u>Arzu Ozek ^a</u>, Çigdem Albayrak[°], Mustafa OdabayghP, nul Odorat Büylikgüngdr['] "OndoAu-Mayu Unie, Deportment of Physics, Samsun-Turkey. [°]Ondokuz Mays Univ., Department of Chemistry Samsun-Turkey E-mail :arzuozek@omu.edu.tr

Keywords: tautomerism, hydrogen bonds, diffraction structure Analysis

The *molecules* of lhe three compounds, $C_{14}H_{12}BrN_1O_2$ with the orto, meta and para positions of Br (I,II and III, respectively), adopt the phenol-imine taulomeric form with strong intmmoleculm 0-H ..N hydrogen bonds.

In the componds, the phenol-imine tautomer, is favored over the keto-amine haut, as indicated by the C6-01, C8-N I, CI-C8, and CIC6 bond lengths. A similer situation was observer] for 2-(3-methoxysalicylideneamino)-IHbenzimidazole monohydrate (I)- ihe OI-C6 bond lengths are approximately the sent, indicating single-bond, hantent, whereas lhe C8-NI bond]coprins are indicative of significant deublebond character in (I), (II) and (III).

[I] Albayrak, C., Odeba;oglu, M. & Bpynkgllngsp O. (2005). AGe CrysL F61, 04230424.

MS15 P14

A Preference for the Thione Structure – Lithium 2-Thiooxo-1,2-dihydropyridine-1-olate Ethanol Solvate Ingrid Svoboda.^{a*} Hartmut Fuess,^a Nina Schneiders, and Jens Hartung^b ^aDepartment of Material Science TU Darmstadt, Germany. ^bDepartment of Organic Chemistry, Kaiserslautern, Germany. E-mail: svoboda@tu-darmstadt.de

Keywords: Thiol Thione Tautormerism, Lithium Compound, Thiohydroxamate, Pyridinethione.

2-Thiooxo-1,2-dihydropyridine-1-olate is an ambident nucleophile that is preferentially alkylated at sulfur in the presence of hard countercations, such as Na⁺ [1]. The reactivity of the title compound, however, does not fit into this general scheme. Its inherent low reactivity toward strong electrophiles in association with a slight preference for the O-alkylation prompted us to explore its solid state structure at 300 K. Diffraction experiments performed at 100 K and 150 K surprisingly did not afford data sets of an improved quality. The compound crystallizes in $P2_1/c$ (Z = 4). Two infinite chains of Li and O give rise to Li_2O_2 rhombi, which are tilted by approximately 90 ° toward one another in an accordion-like manner. Two modes of Li binding are seen in the crystal. In the first, Li is surrounded by two S- and three O-atoms leading to distorted trigonal bipyramidal coordination sphere. In the second, Li binding of four O-atoms in a distorted tetrahedral manner is seen. One corner of this tetrahedron is occupied by an ethanol solvate molecule. The structure of the 2-thiooxo-1,2-dihydropyridine-1-olate entity of the molecule is distinctively different from the one reported for the heterocyclic cores of 2-alkylsulfanyl pyridine-1-oxides [2], bis[2-thiooxo-1,2-dihydropyridine-1-olato]nickel [3] and the corresponding zink complex [4]. The correlation of data with those reported for *N*-alkoxypyridine-2(1*H*)-thiones, on the other hand, fits much closer thus pointing to a preference for the thione formula of the title compound in the solid state [5].

[1] Hartung, J., Kneuer, R., Schwarz, M., Svoboda, I., Fuess, H., *Eur. J. Org. Chem.*, 1999, p. 97.

[2] Hartung, J., Svoboda, I., Fuess, H., Acta Cryst., 1996, C52, 2841.

[3] Chen, X., Hu, Y., Wu, D., Weng, L., Kang, B., *Polyhedron*, 1991, 10, 2651.

[4] Barnett, B.L., Kretschmar, H.C., Hartmann, F.A., Inorg. Chem., 1977, 1834.

[5] Hartung, J., Hiller, M., Schwarz, M., Svoboda, I., Fuess, H., Liebigs. Ann. Chem. 1996, 2091.

MS15 P15

Synthesis, Structural Characterization, Electrochemical, Catalytic, Antimicrobial and Thermal Properties of the Polymeric Metal Complexes Özlem <u>Yılmaz</u>^a, Ertan Şahin^b, Mehmet Tümer^a, Mehmet Aslantas^c, ^aChemistry Department, Faculty of Arts and Sciences, University of KSU, 46100, Kahramanmaras, TURKEY. ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ataturtk University, 25240 Erzurum, TURKEY. ^cPhysics Department, Faculty of Arts and Sciences, University of KSU, 46100, Kahramanmaras, Turkey. E-mail: <u>mtumer@ksu.edu.tr</u>

Keywords: X-ray crystallography, electrochemical, catalytic reactions

In this $4 - \{(E) - [(4 - \{[(1E) - (4 - \{(E) - (E) - (E$ study. [(aminophenyl)imino]methyl}phenyl)methylene]amino}p henyl)imino]methyl}ben-zaldehyde (L) ligand was prepared from the reaction between terephthalaldehyde with 1,4-di-aminobenzene and then its metal complexes were obtained. After the oxidation reactions, in the solvent mixture, the oxidation product 3,3'-5,5'-tetra-tert-butyl-4,4'diphenoquinone (TTBDQ) was obtained as a single crystal. The oxidation product (TTBDQ), C₂₈H₄₀O₂, crystallizes in the space group P-1 with one-half molecule in the asymmetric unit and the other half generated by an inversion centre. The diphenoquinone moiety is planar within $\pm 0.016(3)$ Å. The thermal studies for the ligand and its complexes studied. In addition, the electrochemical and antimicrobial properties of the compounds were investigated.

MS15 P16

Cocrystals of oxalic acid with tricyclic quinazolone derivatives.<u>Akmal Tojiboev</u>^a, Kambarali Turgunov^a, Bahodir Tashkhodjaev^a. ^a*S.Yunusov Institute of Chemistry of Plant Substances, Tashkent, Uzbekistan.* E-mail: <u>a tojiboev@yahoo.com</u>

Keywords: crystal engineering, cocrystals, quinazolone

The design of organic solids by crystal engineering is presently of high interest [1]. Tricyclic quinazoline derivatives are potentially valuable synthons in crystal engineering: their electron donating nitrogen atom holds