was heated under dynamic vacuum; at 130°C deuterium is released and LiMgAlD₆ is formed: LiMg(AlD₄)₃ \rightarrow LiMgAlD₆ + 2Al + 3D₂. At 180°C LiMgAlD₆ decomposes: LiMgAlD₆ \rightarrow LiD + MgD₂ + Al + 3/2D₂. The first reaction is endothermic; the second exothermic, indicating that LiMg(AlD₄)₃ is not thermodynamic stable. LiMg(AlD₄)₃ crystallizes in the monoclinic space group $P2_1/c$ with cell parameters: a = 8.37 Å, b = 8.74 Å, c =14.30 Å and $\beta = 124.83$ °. The structure consists of isolated AlD₄ tetrahedra that are connected by octahedral Mg and Li atoms. LiMgAlD₆ crystallizes in the trigonal space group P321 with cell parameters: a = 7.98 Å and c =4.38 Å. The structure consists of isolated AlD₆ octahedra

A small amount of $TiCl_3$ was added to $LiMg(AlD_4)_3$ and mixed using the ball milling technique. The effect of addition of $TiCl_3$ was also studied for $LiMgAlD_6$.

[1] Bogdanovic, B., Schwickardi, M., J. Alloys Compd., 1997, 253-254, 1.

[2] Grove, H., *et al.*, *J. Alloys Compd.* (2007), article in press: doi:10.1016/j.jallcom.2007.01.150.

[3] Grove, H., et al. submitted manuscript.

MS17 P11

Structural phase transitions in Sr₂ScReO₆ <u>D. Mikhailova¹</u>, D. Trots¹, H. Ehrenberg², H. Fuess¹ *1 - Institute for Materials Science, Darmstadt University for Technology, Germany, 2 – Leibniz Institute for Solid State and Materials Research, Dresden, Germany* E-mail: <u>mikhailova@st.tu-darmstadt.de</u>

Keywords: Re-containing double perovskites, structural phase transition, magnetism of Re⁺⁵

In double perovskites A₂MReO₆, where A - an alkalineearth ion and M - a non-magnetic two - or three-valence cation such as Zn^{2+} , Mg^{2+} or Sc^{3+} , only the Re ion is relevant to the unusual magnetism in these compounds [1, 2]. Structural thermal behaviour of these compounds, which can be connected with magnetic and transport properties, is not yet investigated. In our work, hightemperature structure investigations of Sr₂ScReO₆ were performed at beamline B2 (HASYLAB DESY, Germany) in Debye-Scherrer mode using the on-site readable imageplate detector OBI and a STOE furnace. All diffraction patterns have been analyzed by using the software package WinPLOTR [3]. Two phase transitions with a change of symmetry of the crystal structure from monoclinic (S.G. P2₁/n) to tetragonal (S.G. P4/mnc) and then to cubic (Fm-3m) have been detected at elevated temperatures. These phase transitions were also proved by DSC measurements. Low-temperature investigations of Sr₂ScReO₆ are in progress.

[1] H.Kato, T. Okuda, Y. Tomioka Phys. Rew. B 69 (2004) 184412.

[2] K. G. Bramnik, H. Ehrenberg, J. K. Dehn, H. Fuess Solid State Science 5 (2003) 235-241.

[3] T. Roisnel, J. Rodriguez-Carvajal, *Mater. Sci. Forum* 378-381 (2001) 118-123.

MS17 P12

X-ray Induced Water Order-Disorder Transition in Hydrated Cesium Cobalt Oxide <u>Hwo-Shuenn Sheu</u>^a, Wei-Ju Shih^a, Horng-Yi Tang^b, Nien-Tsu Sun^b, ^aNational Synchrotron Radiation Research Center, Hsinchu, Taiwan ^b Department of Applied Chemistry, National Chi Nan University, Puli, Taiwan. E-mail: hsheu@nsrrc.org.tw

Keywords: X-ray Induced, Order-Disorder Transitions, Water Structure

Metal cobalt oxides, $A_x CoO_2$ (A= Li, Na, K, Rb, Cs), with lavered structure have been attracting wide attention for the past two decades. Li_xCoO₂ is one of the most important intercalation compounds for secondary lithium ion batteries. Na_xCoO₂ is recognized to be a potential candidate for thermal electric power materials and noncuprites superconductors. $A_x CoO_2$ compounds have a layered structure, with the CoO_2 layers consisting of CoO_6 octahedra sharing common edges and forming a triangular Co-O sublattice. Open and polarizable framework structure makes the compounds adaptable by chemical The superconductivity of hydrated modification. Na_{0.35}CoO₂·1.3H₂O oxide was found and immediately targeted by research scientists owing to its unusual bilayer-hydrate (BLH) structure. In the coupling strength of CoO₂ layers might be varied by the replacement of different ionic size alkalis resulting in the change of c-axis lattice constant. The influence of coupling strength between CoO₂ layers on superconductivity, therefore, can be possibly studied when the process of controlling the interlayer spacing is developed. The bilayer-hydrate of Cs_{0.2}CoO₂·0.63H₂O with a greatest interlayer spacing d 10.0(2)Å among alkali cobalt oxides has been grown in crystal form. Magnetic susceptibility measurement of Cs_{0.2}CoO₂·0.63H₂O displays a paramagnetic behavior down to 1.9 K. We find that X-ray powder diffraction patterns of Cs_{0.2}CoO₂·0.63H₂O changed according to various X-ray dosages during the XRD measurement. The water ordering in Cs_{0.2}CoO₂·0.63H₂O is sensitive to X-ray irradiation. The relative diffraction intensity vary is strongly dependent on the amount of water contain and the location at interfacial position. We will report the X-ray dosage dependent crystal structure of Cs_{0.2}CoO₂·0.63H₂O in the meeting.

MS17 P13

Investigation of $K_x Na_{1-x}NbO_3$ (KNN) near the Morphotropic Phase Boundaries N. Zhang & A.M. Glazer, Department of Physics, University of Oxford, UK. D. Baker & P.A. Thomas, Department of Physics, University of Warwick, UK.

E-mail: n.zhang1@physics.ox.ac.uk

Keywords: morphotropic phase boundary, sodium potassium niobate, neutron and X-ray scattering

PZT is commonly regarded as the leading piezoelectric material for a wide range of applications, and one which all others must be assessed against. However, there are growing concerns over the toxicity and environmental issues of lead-based substances , which is why attention has turned to other lead-free piezoelectric materials, one of which is Sodium Potassium Niobate (KNN).

The newer lead-free materials are united with PZT in that they exhibit a region in their phase diagrams where there appears to be a sudden change in crystal structure. This region has been termed the Morphotropic Phase Boundary (MPB) and appears to coincide with the maximum piezo-response of these materials. Of particular interest in $K_xNa_{1-x}NbO_3$ (KNN) is the presence of three morphotropic phase boundaries (MPB) that occur at $x \sim 0.18$, $x \sim 0.35$, and $x \sim 0.48[1]$.