[4] Mayo, S. L., Olafson B. D., Goddard III, J. Phys. Chem., 1989, 94, 8897

MS19 P16
Isostructurality and Morphotropism of Published 2,4,6-Triphenoxy-1,3,5-triazines Alajos Kálmán, Petra Bombicz, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary. E-mail: akalman@chemres.hu

Keywords: Isostructurality, morphotropism polymorphism

The semirigid triphenoxy-1,3,5-triazine (POT) molecule and its $2 \mathrm{X}, 3 \mathrm{X}-$ and 4 X - (mainly halo-) substituted derivatives enabled us to demonstrate different morphotropic links (including polymorphism) [1] between the groups of isostructural crystals hallmarked by space groups $R 3 c, P 6_{3} / m, R 3, P 3 c 1$ etc. Since all of these structures have been published to elucidate their ability to form Piedfort complexes (PUs) e.g. [2], no one paid attention to those structural connections which are established between them by non-crystallographic rotations or translations. Our present (supplementary) results demonstrate the power of perception.
(i) The 2D-isostructurality of POT (space group $I a$) and 4FPOT $\left(P 2_{1} / c\right)$ are related by a turn of C_{3}-PUs through 1800° sitting on every second c glide plane, around axis b. (ii) Relationship between the $R 3 c$ and $P 6_{3} / m$ dimorphs of $4-\mathrm{BrPOT}$, the second is isostructural with 4-CIPOT, is established by a turn of every second molecule of the $C_{3}-$ PU diads through 180° perpendicular to the trigonal axis. (iii) Mutatis mutandis, a turn of 60° between the eclipsed molecules of 4-CIPOT linked by $3 / \mathrm{m}$ symmetry may result in a novel columnar stacking ($\overline{3}$), if X atoms migrate from para to meta positions. However, space group $R \overline{3}$ is maintained only in 3-IPOT. (iv) In case of the smaller substituents [2], every second $C_{3 i}$-PU diad from the trigonal ($\overline{3}$) columns turns upside down which results in space group $P \overline{3} c 1$. In the new columnar array the $C_{3 i}-\mathrm{PU}$ diads are separated by D_{3}-PUs and vice versa.
The work was supported by Hungarian Reseach Fund (OTKA) T049712.
[1] Kálmán, A. Acta Cryst.B, 2005, 61, 536.
[2] Thalladi, V. R. et al, J. Am. Chem. Soc., 1998, 120, 2563.

MS19 P17

Supercooled High Spin State in Metallosupramolecular Assemblies, Ullrich Pietsch ${ }^{\text {a }}$, Martin Lommel ${ }^{\mathrm{a}}$, Yves Bodethin ${ }^{\mathrm{a}}$, Dirk Kurth ${ }^{\mathrm{b}}$, Guntram Schwarz ${ }^{\mathrm{b}}$, Helmut Möhwald ${ }^{\mathrm{b}}{ }^{\mathrm{a}}$ Solid State Physics Department of Physics, University of Siegen, Germany.
${ }^{\mathrm{b}}$ Imax-Planck-Institute of Colloid and Interface Science, Potsdam, Germany. E-mail: pietsch@physik.uni-siegen.de

Keywords: Molecular magnetism, supramolecular assemblies, structure analysis

In contrast to the current line of molecular magnetism to synthesize molecules or molecule clusters with large spins, the concept of designing supramolecular assemblies containing small magnetic units is most flexible and tunable. An especially versatile approach relies on metallo-supramolecular polyelectrolyte amphiphile complexes self-assembled from bis-terpyridine ligands and amphiphilic molecules hosting octahedrally
coordinated Fe^{2+} - or other transition metal ions $[1,3]$. The Fe^{2+} ion can be induced to switch between a low-spin and a high spin electronic state near room temperature. Using experiments of x-ray scattering, x-ray magnetic circular dichroism and magnetic measurements at powdered material the spin transition has been identified as a transition from the diamagnetic $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{0}$ low spin state to the magnetic $\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{e}_{\mathrm{g}}{ }^{2}$ high-spin state and is induced by a structural order-disorder transition of the amphiphilic matrix upon heating. The temperature of phase transition can be modified by the number and length of amphiphils attached. In contrast to thin organized films the induced spin transition is not reversible and can be classified as super-cooled high-spin state which might be stabilized by the disorder and interdigitation of amphiphilic molecules. Low temperature measurements may reveal possible antiferromagnetic spin coupling between Fe^{2+} ions. The temperature of spin transition and the amount of the magnetic moment can be tuned by mixtures of Ni^{2+} and Fe^{2+} ions [3].
[1] Y. Bodenthin, U. Pietsch, J. Grenzer, Th. Geue, H. Möhwald, and D. G. Kurth, J. Phys. Chem. B, 109, (26), 12795-12799 (2005)
[2] Y.Bodenthin, M.Lommel, U.Pietsch, G.Schwarz, D.Kurth, H.Möhwald, A.Nefedov, Phys.Rev.B. (2007), accepted
[3] M. Lommel, Diploma Thesis, Siegen (2007)

MS19 P18

A Singular Noninterpenetrating Coordination Polymer with the $\mathrm{Pt}_{3} \mathbf{O}_{\mathbf{4}}$ Structure Xavier Solans, ${ }^{\text {c }}$ Ana B. Gaspar, ${ }^{\text {a }}$ Ana Galet, ${ }^{\text {b }}$ M. Carmen Muñoz, ${ }^{\text {b }}$ and José Antonio Real ${ }^{\text {a }}$,
${ }^{a}$ Universitat de València. ${ }^{b}$ Universitat Politècnica de València. ${ }^{c}$ Universitat de Barcelona. Spain.
E-mail: xavier@geo.ub.es
Keywords: iron complex, crystal structure, inclusion compound

The homoleptic low-spin complex $\left[\mathrm{Fe}(\mathrm{L})_{3}\right]^{2+}$, where L is the bisbidentate ligand 1,10-phenanthroline-5,6-dione, coordinates $\mathrm{Na}+$ ions via exo-oriented dione groups defining a three-dimensional cationic network $\left.\left\{\left[\mathrm{Fe}(\mathbf{L})_{3}\right]_{4} \mathrm{Na}_{3}\right\}^{11+}\right\}_{\mathrm{n}}$ with $\mathrm{Pt}_{3} \mathrm{O}_{4}$ topology. The large volume generated by the network is filled with 11 perchlorate ions, 7 " NaClO_{4} " ionic pairs, and $9 \mathrm{H}_{2} \mathrm{O}$ molecules. Singular $\left[\mathrm{Na}^{+}\right]_{4}$ units, in which the Na^{+}ions are practically uncoordinated, are formed. Crystal data formula $\mathrm{C}_{144} \mathrm{H}_{90} \mathrm{Cl}_{18} \mathrm{Fe}_{4} \mathrm{~N}_{24} \mathrm{Na}_{10} \mathrm{O}_{105}, M=4927.18$, cubic, space group $\operatorname{Pm3n}$ (No. 223), $a=23.6270(10) \AA, V=$ $13189.42 \AA^{3}, Z=2$, pcalc $\left.=1.236 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)\right)=$ $5028, \mu(\mathrm{Mo} \mathrm{K} \alpha)=5 \mathrm{~cm}-1 ; 2387$ reflections observed $[I>$ $2 \sigma(I)] ; \mathrm{R} 1=0.0656, \mathrm{wR} 2=0.1688$.
The X-ray single-crystal structure revealed a cationic polymeric framework composed of mononuclear species $\left[\mathrm{Fe}(\mathbf{L})_{3}\right]^{2+}$ assembled by Na^{+}cations $[\mathrm{Na}(1)]$. The FeII atoms lie in an almost regular octahedral environment defined by six N atoms belonging to three \mathbf{L} ligands. Four $\left[\mathrm{Fe}(\mathbf{L})_{3}\right]^{2+}$ units with alternating
chirality assemble, defining a pseudocubic coordination site for $\mathrm{Na}(1)$. The large intraframework spaces which the $\mathrm{Na}+$ ions can be considered uncoordinated. The cationic covalent network $\left\{\left[\mathrm{Fe}(\mathbf{L})_{3}\right]_{4} \mathrm{Na}_{3}\right\}^{11+}$ constitutes a rare example of a (3,4)-connected noninterpenetrated coordination polymer based on the structure of the binary oxide Pt 3 O 4 . The $\mathrm{Na}(1)$ atoms and the $[\mathrm{Fe}(\mathbf{L}) 3] 2+$ units play the role of the 4 -connected Pt
atoms and the 3 -connected O atoms of the $\mathrm{Pt}_{3} \mathrm{O}_{4}$ net, respectively.
The void defined by $\left\{\left[\mathrm{Fe}(\mathbf{L})_{3}\right]_{4} \mathrm{Na}_{3}\right\}{ }^{11+}$ corresponds to 60.4% of the total unit cell volume (ca. $8475 \AA^{3}$). It is filled with 11 ClO 4 counterions, 7 additional $\mathrm{Na}^{+} \mathrm{ClO}_{4}$ guest ion pairs, and 9 disordered H2O molecules. The H2O molecules interact with each other via weak H bonds $[d(\mathrm{O},,, \mathrm{O})$) $2.939(3) \AA]$ and form well-separated, ca. $7 \AA$, $\left[\mathrm{H}_{2} \mathrm{O}\right]_{4}$ square units. The additional $\mathrm{Na}+$ cations belong to two different crystallographic sites, namely, $\mathrm{Na}(2)$ and Na (3). The $\mathrm{Na}(2)$ atoms define, together with $\mathrm{Na}(1)$, a regular truncated octahedron $[d(\mathrm{Na}(1),,, \mathrm{Na}(2))$) 8.353(3) \AA], with the $\mathrm{Fe}^{\mathrm{II}}$ atoms placed at the center of the hexagonal. The space inside this sodalite-like, positively charged surface is filled with a symmetrical negatively charged "cage", made up of two nonequivalent perchlorate groups.
The polymer is loaded with $14 \mathrm{Na}^{+} \mathrm{ClO}_{4}{ }^{-}$guest pairs and $18 \mathrm{H}_{2} \mathrm{O}$ molecules per unit cell, which stabilize its structure. Interestingly, the charge distribution in the unit cell is rather singular because it can be described like a "Russian nested doll": the positively charged sodalite-like cage "enclathrate", a negative surface defined by the interpenetration of a cuboctahedron

MS19 P19

The Melting Point Behaviour in the Short -Chain n-Alkan-1-ols Laura Spix, Roland Boese*, Institut für Anorganische Chemie, Universität Duisburg-Essen, Universitätsstr. 5- 7, D-45117 Essen, Germany.
E-mail: roland.boese@uni-due.de

Keywords: alcohols, crystal structure, melting point alternation

n-Alkanes and most of their α - and α, ω-substituted derivatives show a remarkable alternation in their melting points. ${ }^{[1,2]}$ Usually, representatives with an even number of C -atoms melt relatively higher than those with an odd number. Other physical properties such as solubilities and sublimation enthalpies that are related to the solid state also exhibit an alternating pattern, whereas those related to the liquid state show monotonic behavior ${ }^{[3,4-7]}$ But there also exist exceptions. For instance the series of the 1 -chloro-, 1-bromo-, and 1-thioalkanes show an inverted alternancy of the melting points ${ }^{[8]}$ and the 1 -alcohols are almost monotonic. It was shown that the melting points in
α, ω-alkanediols are correlated to the calculated lattice energies. ${ }^{[5]}$ In this study, single crystals of six members of n-alkane-1-ols $\left(\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n}\right.$ - $\left.\mathrm{OH}, n=4-9\right)$ have been grown in situ using a miniature zone melting procedure, and their X-ray analyses have been performed. The structural similarities and differences between even and odd members could be analyzed by the packing arrangements and by the interplay between hydrogen bonding and van der Waals interaction, however the calculated packing energies exhibit a stronger alternation behavior than the melting points.

Figure 1: Crystal structure of n-pentane-1-ol

Figure 2: Crystal structure of n-hexane-1-ol
[1] A. Baeyer, Ber. Chem. Ges. 1877, 10, 1286-1288.
[2] A. Kitaigorodskii, Molecular Crystals and Molecules, Academic Press, 1973.
[3] F. L. Breusch, Fortschr. Chem. Forsch. 1969, 12, 119 - 184.
[4] R. Boese, H.-C. Weiss, D. Bläser, Angew. Chem. Int. Ed. 1999, 38, 988-992.
[5] V. R. Thalladi, R. Boese, H.-C. Weiss, Angew. Chem. Int. Ed. 2000, 39, 918-922.
[6] V. R. Thalladi, R. Boese, H.-C. Weiss, J. Am. Chem. Soc., 2000, 122, 1186-1190.
[7] V. R. Thalladi, M. Nüsse, R. Boese, J. Am. Chem. Soc., 2000, 122, 9227-9236.
[8] R. Boese, H.-C. Weiss, V. R. Thalladi, C. Schauerte Durban, ECM21, Book of Abstracts, 2003.

