bottlenecks are encountered (Vumax $\approx 1.7-2$) by the sodium for several migration directions. The structure of $\mathrm{K}_{2} \mathrm{CoP}_{2} \mathrm{O}_{7}$ [9] (tetragonal, S.G.: $\mathrm{P}_{2} / \mathrm{mnm}$, $\mathrm{a}=7.926 \AA$, $\mathrm{c}=11.350 \AA$) consists of $\left[\mathrm{CoP}_{2} \mathrm{O}_{7}\right]_{\infty}$ layers with alkali metal cations lying between the layers. The cation motion seems to be bidimensional in the (001) planes with Vumax less than 1.30 along [110]. The possible motion through adjacent layers (c axis) seems subsequently difficult. These suggestions are to be confirmed by electrical measurements.
[1] I. D. Brown; Phys. Chem. Mineral. 15 (1987), pp.30-34.
[2] SoftBV web site by Pr. Stefan Adams:
http://kristall.uni.mki.gwdg.de/softbv.
[3] M. Nespolo, M. Isobe, J. Iida, N. Kimizuka, Acta Crystallogr. B 56 (2000) 805-810.
[4] M. Nespolo, CHARDT-IT A Program to compute charge distributions and bond valences in non-molecular crystalline structures, LCM3B, University Henri Poincaré Nancy I, France, 2001.
[5] D. Mazza, S. Ronchetti, O. Bohnké, H. Duroy, J. L. Fourquet, S. State Ionics, 149, Issues 1-2, (2002) 81-88.
[6] D. Mazza, J. of Solid State Chem. 156 (2001) 154-160.
[7] D. Mazza, S. Ronchetti, O. Bohnké, H. Duroy, J. L. Fourquet, S. State Ionics, 149, Issues 1-2, (2002) 81-88.
[8] N. Ouerfelli, A. Guesmi, D. Mazza, A. Madani, M. F. Zid, A. Driss, J. of Solid State Chem. Article in press.
[9] A. Guesmi, A. Driss, J. Sc. Chem. Tunisie. 4 (2002) 1675.

MS43 P03

Full formula of Molybdenum(V) phosphates out of empiric bond strength evaluation André Leclaire CRISMAT-ENSICAEN, CNRS-UMR6508, University of Caen, France. E-mail: andre.leclaire@ensicaen.fr

Keywords: Bond strength calculations, Molybdenum phosphates, Molybdenum(V).

Generally the X-ray structures of crystals obtained from hydrothermal synthesis or out of an aqueous solution don't allow distinguishing between an oxygen atom or a hydroxyl group or a water molecule bonded to transition elements, due to the great difficulty to find hydrogen atoms on the Fourier and Difference Synthesis maps. Donnay and Allmann [1] gave a procedure based on the sum of electrostatic valences received by the oxygen atoms. They gave also equations for determining the electrostatic valences given by a central ion to the surrounding oxygen atoms. Latter a more convenient empirical expression was reported: $\mathrm{v}_{\mathrm{ij}}=\exp \left[\left(\mathrm{R}_{\mathrm{ij}}-\mathrm{d}_{\mathrm{ij}}\right) / 0.37\right]$ where R_{ij} tabulate by Brese and O'Keeffe [2] is characteristic of a cation and d_{ij} the cation oxygen distances. We synthesized and studied a huge number of pentavalent molybdenum phosphates and mixed-valence phosphates containing Mo^{5+} but only the Rij value for Mo^{6+} was tabulated. So in a first time we compute the Rij constant for Mo^{5+} of 1.879 with $86 \mathrm{Mo}(\mathrm{V}) \mathrm{O}_{6}$ octahedra. This values works very well and latter Zocchi [3] found a $\mathrm{Rij}=1.8788$ which associated to $\mathrm{B}=0.3046$ works for all oxidation states from +3 to +6 .
During the studies of compounds containing $\mathbf{M o}^{5+}{ }_{12} \mathbf{M}^{2+} \mathbf{P}_{\mathbf{8}} \mathbf{O}_{62} \mathbf{H}_{\mathbf{x}}$ clusters, the R_{ij} value of 1.879 lead to valences ranging from 4.63 to 5.05 with a mean value of 4.85 for Mo^{5+} whereas valences ranging from 4.60 to 5.27 with a mean value of 4.84 were obtained for phosphorus with the $\mathrm{R}_{\mathrm{ij}}=1.604$ reported by Brese and O'Keeffe [2]. In order to improve the valence calculations, new R_{ij} values were computed from $328 \mathrm{PO}_{4}$ tetrahedra for phosphorus and from $42 \mathrm{Mo}^{5+} \mathrm{O}_{6}$ octahedra sharing only
edges in Mo_{6} rings. So \mathbf{R}_{ij} values of $\mathbf{1 . 8 9 0}$ and $\mathbf{1 . 6 1 5}$ were obtained for Mo^{5+} and \mathbf{P} respectively. With these values the electrostatic bond valence sums are centered on 4.99 for both polyhedra with valences ranging from 4.77 to 5.20 for Mo^{5+} and from 4.73 to 5.40 for P in the compounds exhibiting $\mathrm{Mo}_{12} \mathrm{MP}_{8} \mathrm{O}_{62} \mathrm{H}_{\mathrm{x}}$. The most amazing result deduced from the bond valence sum calculations was that three oxygen atoms of the $\mathrm{Mo}_{6} \mathrm{O}_{\mathbf{2 4}}$ rings are hydroxyl groups (lack of 0.9 v.u.) so the ring consist of six edge sharing $\mathrm{MoO}_{5} \mathrm{OH}$ octahedral leading to the formulation $\mathrm{Mo}_{6} \mathrm{O}_{21}(\mathrm{OH})_{3}$. on the other hand the valence sums received by the phosphorus tetrahedral show that they belong to the PO_{4}, or $\mathrm{PO}_{3} \mathrm{OH}$, or $\mathrm{PO}_{2}(\mathrm{Oh})_{2}$ species according to the other cations in the structure. So the cluster will be $\left[\mathrm{Mo}_{12} \mathrm{M}^{2+} \mathrm{O}^{24}(\mathrm{OH})_{6}\left(\mathrm{PO}_{4}\right)_{\mathrm{x}}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{y}\left(\mathrm{PO}_{2}(\mathrm{OH})_{2}\right)_{8-x-y}\right]$. One observes also on some oxygen atoms lacks of 0.30 or 0.65 v.u. pointing out that those oxygen atoms receive hydrogen bonds.
In conclusion the use of experimental bond valence sums allowed to establish the real formulation of the clusters containing pentavalent molybdenum obtained by hydrothermal synthesis and also to set up the hydrogen bonds network.
[1] Donnay G., Allmann R., Amer. Mineral., 1970, 55, 1003.
[2] Brese N.E., O'Keeffe M., Acta Crystallog., 1991, B47, 192.
[3] Zocchi F., Solid State Science, 2001, 3, 383.

MS43 P04

The crystal structure of caesium disulfate at 120 and 273 K. Kenny Stahl ${ }^{\text {a }}$, Rolf W. Berg ${ }^{\text {a }}$, K. Michael Eriksen ${ }^{\text {a }}$, Rasmus Fehrmann ${ }^{\text {a }}{ }^{\text {a }}$ Chemistry Department, Technical University of Denmark, Lyngby, Denmark.
E-mail: kenny@kemi.dtu.dk
Keywords: caesium disulfate, coordination geometry, phase transition

The crystal structures of $\mathrm{Cs}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ have been determined at 120 and 273 K from $\mathrm{MoK} \alpha$ data: $\mathrm{T}=120 \mathrm{~K}, \mathrm{P}-1, \mathrm{Z}=20$, $\mathrm{a}=14.941(2), \mathrm{b}=16.036(2), \mathrm{c}=19.300(2) \AA, \alpha=85.025(2)$, $\beta=67.630(2), \quad \gamma=74.968(2)^{\circ} ; \quad \mathrm{T}=273 \mathrm{~K}, \quad \mathrm{P}-1, \quad \mathrm{Z}=10$, $\mathrm{a}=7.5229(5), \quad 15.959(1), \quad \mathrm{c}=17.973(1) \AA, \quad \alpha=90.207(1)$, $\beta=90.418(1), \quad \gamma=102.206(2)^{\circ}$. Their crystal structures represent a novel structure type, entirely different from the dichromate type structures of other alkali disulfates [1]: $8 / 10$ of the caesium ions form a "tube" surrounding $2 / 10$ of the disulfates (Fig. 1), while the remaining disulfates enclose the remaining caesium ions in a sandwich structure.

