a transition at 493 - 497 K from an ordered, antiferroelectric to a disordered paraelectric hase with a monoclinic structure, spacegroup A/2a [1]. This is accompanied by a pronounced change in the shape and intensity of diffuse scattering and has been modeled with correlated shifts of Ti, Ca and O [1,2]. Previous characterization of this diffuse scattering probed a very limited portion in reciprocal space using synchrotron X-rays [1]. Here, we report preliminary results of a comprehensive neutron single crystal study done at room temperature. A 3D volume in reciprocal space has been measured using the SXD neutron diffractometer at ISIS and several sections have been extracted. Diffuse scattering is characterized by broad bands out to 20Å⁻¹. We use a Monte Carlo simulation approach to characterise this with the average structure as input in order to provide a starting point for a characterization of the diffuse scattering above the phase transition.

[1] Malcherek T., Paulmann C., Chiara Domeneghetti M., Bismayer U. *J. Appl.Cryst.* 34, 108, **2001**. [2] Ghose S., Ito Y., Hatch D.M., *Phys. Chem. Miner.* 17, 591, **1991**.

Keywords: neutron diffuse scattering; single crystal diffraction; minerals

FA2-MS01-P18

Synthesis and Crystal Structure of SrFe [BP₂O₈(OH)₂] and CaCo(H₂O)[BP₂O₈(OH)] ·H₂O. <u>Prashanth Wilfred Menezes</u>^a, Stefan Hoffmann^a, Yurii Prots^a, Rüdiger Kniep^a. ^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany. E-mail: menezes@cpfs.mpg.de

Single crystals of SrFe[BP₂O₈(OH)₂] and CaCo(H₂O) [BP₂O₂(OH)]·H₂Oweresynthesizedundermildhydrothermal conditions and investigated by single crystal X-ray diffraction [1-2]. The crystal structure of SrFe[BP₂O₈(OH)₂] (triclinic, space group $P\overline{1}$ (No. 2), a = 6.6704(12) Å, b = 6.6927(13) Å, c = 9.3891(19) Å, $\alpha = 109.829(5)^{\circ}$, $\beta =$ $102.068(6)^{\circ}, \gamma = 103.151(3)^{\circ}, V = 364.74(12) \text{ Å}^3, Z = 2)$ contains isolated borophosphate oligomers, [BP₂O₈(OH)₂]⁵⁻ (unbranched tetrahedral triples, Figure 1(a)), which are interconnected by Fe^{III}O₄(OH), coordination octahedra. The resulting framework is characterized by elliptical channels running along [011]. Strontium takes positions inside the channels. SrFe[BP₂O₆(OH)₂] represents the first example in the structural chemistry of borophosphates where the charge of the anionic partial structure is balanced by a divalent and a trivalent cation $(M^{II}M^{III})$. The crystal structure of

CaCo(H₂O)[BP₂O₈(OH)]·H₂O (triclinic, space group $P\bar{1}$ (No. 2), a = 6.5793(3) Å, b = 7.8320(1) Å, c = 8.8172(1) Å, $a = 68.785(7)^{\circ}$, $\beta = 82.719(10)^{\circ}$, $\gamma = 73.985(9)^{\circ}$, V = 406.930(19) Å³, Z = 2) contains layers stacked along [011]. The layers are built from isolated borophosphate oligomers, [B₂P₄O₁₆(OH)₂]⁸ (loop branched tetrahedral hexamers, Figure 1(b)), which are interconnected by dimers of CoO₃O_{2/2}(H₂O) coordination octahedra. Calcium ions and crystal water are located at the borders of the layers, close to intra–layer cavities. CaCo(H₂O)[BP₂O₈(OH)]·H₂O is the

first example in borophosphate crystal chemistry where dimers of metal octahedra together with borophosphate oligomers form a layered arrangement.

Figure 1. Anionic partial structure of (a) $SrFe[BP_2O_8(OH)_2]$ and (b) $CaCo(H_2O)[BP_2O_8(OH)] \cdot H_2O$ (grey tetrahedra = BO_4 ; light grey tetrahedra = PO_4 ; grey spheres = protons).

[1] Menezes P.W., Hoffmann S, Prots Yu., Schnelle W., Kniep R., *Z. Anorg. Allg. Chem.*, **2009** (in press). [2] Menezes P.W., Hoffmann S, Prots Yu., Kniep R., *Z. Anorg. Allg. Chem.*, **2009** (in press).

Keywords: borophosphates; hydrothermal growth; single crystals

FA2-MS01-P19

Solid Solution Series in Transition Metal Borophosphates. <u>Falk Gruchow</u>^a, Stefan Hoffmann^a, Rüdiger Kniep^a. ^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.

E-Mail: gruchow@cpfs.mpg.de

A series of transition metal borophosphates with the general formula $Mn_xCo_{1,x}[BPO_4(OH)_2]$ (x = 0, 0.1, 0.2, ..., 1) was prepared under mild hydrothermal conditions. The reaction products were obtained in high yields as single phase materials according to powder X-ray diffraction data. The compounds $M^{II}[BPO_4(OH)_2]$ ($M^{II} = Co, Mn$) [1] are isotypic and crystallize in the chiral space groups P3,21 (No. 152) or P3,21 (No. 154), respectively. Their crystal structures are characterized by edge-sharing helical $M^{II}O_{4}$ -octahedral chains wound around 3, or 3, screw axes (running along [001]). The chains are interconnected by borophosphate single chains of alternating BO₂(OH)₂ and PO₄ tetrahedra running perpendicular to [001], resulting in a three-dimensional framework structure. As a first example in the interesting group of chiral borophosphates a complete miscibility of Co- and Mn-based phases has been proven experimentally. A linear correlation between the nominal manganese content x and the lattice parameters (or the cell volume V) was found. Further studies regarding morphological aspects, magnetic properties and possible ordering effects of the metal cations are in progress.

^{25&}lt;sup>th</sup> European Crystallographic Meeting, ECM 25, İstanbul, 2009 *Acta Cryst.* (2009). A**65**, s 181

Figure 1. a) Unit cell volume V versus nominal manganese content x in the system $Mn_xCo_{1-x}[BPO_4(OH)_2]$ b) Edgesharing $M^{II}O_{6}$ -octahedra wound around a 3, screw axis

[1] Huang Y.-X.; Ewald B.; Schnelle W.; Prots Yu.; Kniep R., Inorg Chem. 2006, 45, 7578

Keywords: borophosphates; hydrothermal growth; solid solutions

FA2-MS01-P20

Sr₁₀(PO₄)₅₅(BO₄)₀₅(BO₂): A Strontium Borate-Phosphate Closely Related to the Apatite Crystal Structure. Shuang Chen^{ab}, Stefan Hoffmann^a, Wilder Carrillo-Cabrera^a, Lev G. Akselrud^c, Yurii Prots^a, Jing-Tai Zhao^b, Rüdiger Kniep^a. ^aMax-Planck-Institut für Chemische Physik fester Stoffe. ^bShanghai Institute of Ceramics, Chinese Academy of Sciences. ^cDepartment of Inorganic Chemistry, Lviv State University. E-mail: shuang.chen@cpfs.mpg.de

Strontium borate-phosphate $Sr_{10}(PO_4)_{5,5}(BO_4)_{0,5}(BO_5)$ was prepared from SrCO₃, NH₄H₂PO₄ and H₃BO₃ at high temperature (1150 - 1550 °C) and was found to be free of alkali metal compounds. X-ray structure determination was carried out on a single crystal obtained from the melt (space group $P\overline{3}$ No.147; a = 9.7973(8) Å, c = 7.3056(8)Å, V = 607.29(10) Å³, Z = 1). Sr₁₀(PO₄)₅₅(BO₄)₀₅(BO₂) is a derivative of the apatite crystal structure. Strontium sites are found to be fully occupied while $[PO_{4}]^{3-}$ tetrahedra are partly replaced by [BO₄]⁵⁻ groups. The crystal structure contains Sr cations occupying the 6g (Sr1) and 2d (Sr2, Sr3) sites, isolated tetrahedral [PO₄]³⁻/[BO₄]⁵⁻ groups, and linear [BO₂]⁻ groups located in the hexagonally shaped (trigonal antiprismatic) channels formed by Sr1 atoms and running along [001] (Figure 1). The space group of the

present compound is reduced to $P\overline{3}$ because the orientation of the [PO₄]/[BO₄] tetrahedra destroys the mirror plane characteristic for the apatite crystal structure $(P6_3/m)$ [1].

Figure. 1 Crystal structure of $Sr_{10}(PO_4)_{5.5}(BO_4)_{0.5}(BO_2)$: (a) Projection along [001] showing the hexagonally shaped channels formed by Sr1 around the three-fold inversion axis $(Z = P_{0.95}B_{0.05})$. (b) Side view emphasizing the linear [BO,] groups and the corresponding trigonal antiprisma formed by Sr1.

[1] Calvo C., Faggiani R., Krishnamurthy N., Acta Crystallogr., 1975, 31 B, 188.

Keywords: apatite; strontium borate-phosphate; crystal structure

FA2-MS01-P21

 $NaSc[BP,O_{\ell}(OH)_{1}][(HO)PO_{1}]:$ **Synthesis** and Crystal Structure of the First Alkali Metal Scandium Borophosphate Hydrogenphosphate. Stefan Hoffmann^a, Prashanth Wilfred Menezes^a, Yurii Prots^a, Rüdiger Kniep^a. ^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany. E-mail: hoffmann@cpfs.mpg.de

Metal phosphates and borophosphates have received much attention because of their fascinating structural architectures and potential applications [1-2]. The combination of complex borophosphate anions together with (hydrogen) phosphate groups is rather rare and may generate a new class of materials with novel properties. The first alkali metal scandium borophosphate hydrogenphosphate, NaSc[BP₂O₄(OH)₂][(HO)PO₂], was synthesized under mild hydrothermal conditions in the course of our investigations in alkali metal containing scandium borophosphates. The crystal structure was determined from single crystal X-ray data: monoclinic, space group $P2_1/c$ (No. 14), a =5.0010(4) Å, b = 12.4271(9) Å, c = 15.8340(14) Å, $\beta =$ 94.201(4)°, V = 981.41(11) Å³ and Z = 2. The anionic partial structure of NaSc[BP₂O₆(OH)₃][(HO)PO₃] contains isolated

25th European Crystallographic Meeting, ECM 25, İstanbul, 2009 Acta Cryst. (2009). A65, s 182