311. [2] Stumpf H.O., Ouahab L., Pei Y., Grandjean D., Kahn O. *Science* **1993**, 261, 447-449. [3] Klink S.I., Keizer H., van Veggel F.C.J.M. *Angew. Chem., Int. Ed.* **2000**, 39, 4319-4321.

[4] Wu Ch.-D., Hu A., Zhang L., Lin W.-B. J. Am. Chem. Soc. 2005, 127, 8940-8941.
[5] Altman M., Shukla A.D., Zubkov T., Evmenenko G., Dutta, P.J., van der Boom M.E. J. Am. Chem. Soc. 2006, 128, 7374-7382.
[6] Shekhah O., Wang H., Kowarik S., Schreiber F., Paulus M., Tolan M., Sternemann Ch., Evers F., Zacher D., Fischer R.A., Wöll Ch. J. Am. Chem. Soc. 2007, 129, 15118-15119.

Keywords: silver coordination complexes; fluorescence; antibacterial properties

FA4-MS04-P04

From X-ray Structure to Gel – Can We Predict Gelation Abilities of Small Molecules? <u>Roman</u> <u>Luboradzki</u>^{a,b}, Monika Pyzalska^b, Zbigniew Pakulski^c. ^aInstitute of Physical Chemistry, Polish Academy of Sciences, Poland. ^bCardinal Stefan Wyszynski University, Warsaw, Poland. ^cInstitute of Organic Chemistry, Polish Academy of Sciences, Poland. E-mail: <u>romek@ichf.edu.pl</u>

In recent years, gels derived from low-molecular-mass compounds have attracted special interest on account of their unique features, potential applications and relative simplicity of the gelator molecules [1], [2]. These gels fall within the physical gels (in contradistinction to chemical gels) since, only non-covalent interactions between the gelator molecules are involved. The formation of the gel based on spontaneous self-assembly of gelator molecules under non-equilibrium conditions such as the cooling of oversaturated solutions which is used as the typical preparation method. Despite gels are, in general, amorphous an x-ray crystallography may be used as a tool for predicting the presence (or absence) of gelation abilities since the basic feature of the gelator molecules is their ability to stack into one-dimensional chains (e.g. by using intermolecular hydrogen bonds). Moreover, crystallographic data can be an inspiration for design more complicated systems, as two component gels [3]. The authors acknowledge the financial support from the Polish Ministry of Science and Higher Education (Grant No. N204 058 32/1514)

[1] Terech, P.; Weiss, R. G. *Chem. Rev.* **1997**, 97, 3133–3159 and references therein. [2] Gronwald, O.; Snip, E.; Shinkai, S. *Curr. Opin. Coll. Int. Sci.* **2002**, 7, 148–156. [3]. Luboradzki R.; Pakulski *Z. Supramolecular Chemistry* (in press).

Keywords: gels; saccharides; self-assembly

FA4-MS04-P05

β-Cyclodextrin Inclusion Complexes of L- and D-tryptophan. Chiral Discrimination. <u>Irene M.</u> <u>Mavridis</u>^a, Spyros D. Chatziefthymiou^a, Anastasia Paulidou^a. *^aNational Center for Scientific Research "Demokritos", Athens, Greece.*

Email: mavridi@chem.demokritos.gr

glucopyranose residues, which are water soluble and they are used for micro encapsulation of organic molecules inside their relatively apolar cavity. CDs are chiral hosts forming diastereomeric inclusion complexes with chiral substrates, a feature that makes them potential agents for enantiomeric discrimination, which is the basis of enantiomeric resolution of racemic mixtures by chiral gas and liquid chromatography. Enantiomeric discrimination by CDs is achieved by weak intermolecular interactions that may or may not include H-bonding, established by the embrace of the guest by the CD host, in order to obtain maximum contact. Resolution of racemates by natural α -, β -, and γ -CDs is generally poor, because the secondary hydroxyl groups of adjacent glucose units form strong intramolecular H-bonds that keep the cavity rigid and symmetrical. As a consequence, strict shape complementarity with a particular chiral guest, of the type "lock and key", is required for complete enantioselective complexation. On the other hand, in per-derivatized CDs the above strong H-bonding network has been destroyed and the macrocycles can be distorted readily, thus they can perform enantiomeric discrimination via "induced fit", leading even to complete resolution of racemates [1-2]. Presently, we report the crystal and molecular structures of the inclusion complexes of N-acetyl-L- tryptophan and N-acetyl-Dtryptophan with β CD, which are isomorphous, triclinic P1, a=17.760, b=15.158, c=15.237, α =102.774, β =99.346, γ =112.997. The host forms dimers that include two guest molecules (host:guest ratio 1:1), their aromatic moieties being in parallel arrangement (π ... π interactions). The hostguest interactions involve H-bonding of the carboxylic terminal group and the indole part. Chiral discrimination of BCD is discussed based on similarities and differences

Cyclodextrins (CDs) are well known cyclic oligosaccharides,

consisting mainly of six (α CD), seven (β CD) or eight (γ CD)

of the inclusion complexes of the two enantiomeric guests and the corresponding complexes of the N-acetyl-L- and D- phenylalanine.

 Yannakopoulou, K., Mentzafos, D., Mavridis I. M., Dandika, K., Angew. Chem. Int. Ed. Engl. 1996, 35, 2480. [2] Makedonopoulou, S., Yannakopoulou, K., Mentzafos, D., Lamzin, V., Popov, A., Mavridis, I. M., Acta Crystallogr. 2001, B57, 399.

Keywords: cyclodextrin; tryptophan; chiral discrimination

FA4-MS04-P06

Conformational Adaptations of Podands as a Base for Selective Binding of Stereoisomers. <u>Krunoslav</u> <u>Užarević</u>^a, Ivica Đilović^a, Marina Cindrić^a, Dubravka Matković-Čalogović^a. *aLaboratory of General and Inorganic Chemistry, Chemistry Department, Faculty of Science and Mathematics, University of Zagreb, Zagreb, Croatia.*

E-mail: <u>kruno@chem.pmf.hr</u>

Flexible anion receptors draw significant scientific attention in the last few decades.[1] Although they usually display lower binding constants than rigid hosts, many interesting features are connected with this class of compounds. Binding