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The description of displacive distorted structures in terms of symmetry-adapted

modes is reviewed. A specific parameterization of the symmetry-mode

decomposition of these pseudosymmetric structures defined on the setting of

the experimental space group is proposed. This approach closely follows

crystallographic conventions and permits a straightforward transformation

between symmetry-mode and conventional descriptions of the structures.

Multiple examples are presented showing the insight provided by the symmetry-

mode approach. The methodology is shown at work, illustrating its various

possibilities for improving the characterization of distorted structures, for

example: detection of hidden structural correlations, identification of funda-

mental and marginal degrees of freedom, reduction of the effective number of

atomic positional parameters, quantitative comparison of structures with the

same or different space group, detection of false refinement minima, systematic

characterization of thermal behavior, rationalization of phase diagrams and

various symmetries in families of compounds etc. The close relation of the

symmetry-mode description with the superspace formalism applied to

commensurate superstructures is also discussed. Finally, the application of this

methodology in the field of ab initio or first-principles calculations is outlined.

At present, there are several freely available user-friendly computer tools for

performing automatic symmetry-mode analyses. The use of these programs

does not require a deep knowledge of group theory and can be applied either

a posteriori to analyze a given distorted structure or a priori to parameterize the

structure to be determined. It is hoped that this article will encourage the use of

these tools. All the examples presented here have been worked out using the

program AMPLIMODES [Orobengoa et al. (2009). J. Appl. Cryst. 42, 820–833].

1. Introduction

Many crystalline structures can be considered pseudosym-

metric with respect to some configuration of higher symmetry.

This higher-symmetry arrangement may be another phase of

the compound or a virtual reference structure. In the following

we will refer to this (real or virtual) structure of higher

symmetry as the parent structure or parent phase. By defini-

tion, a group–subgroup relation necessarily exists between the

space groups of the parent structure and the observed one.

This latter can then be qualified as a distorted structure and

can be described as the parent crystalline structure plus a

static symmetry-breaking structural distortion. If the distor-

tion is sufficiently small, a thermally driven structural transi-

tion to the configuration of higher symmetry may take place at

higher temperatures (Bruce, 1980; Dove, 1993, 1997; Rabe et

al., 2007). Ferroic structures are a particular case of this type of

distorted structure, with the distorted (ferroic) structure

having a lower point group than the parent phase (Wadhawan,

2000). Structural distortions can be of displacive type or may

include some type of order–disorder component (symmetry-

breaking change of the occupation probabilities of some

atomic sites). In the present paper we will only consider purely

displacive distorted structures, and the term distorted will be

used in this restricted sense. We will see below, however, that

some simple order–disorder distortions can also be included

within this displacive formalism.

Similarly, as happens with dynamic distortions (thermal

vibrations), we know since the development of Landau theory

(Landau & Lifshitz, 1969; Toledano & Toledano, 1987) that

the natural language for dealing with the static frozen distor-

tions present in ferroic structures, and distorted structures in

general, is the one of modes. Modes are collective correlated

atomic displacements fulfilling specific symmetry properties.

Structural distortions in distorted structures can be decom-

posed into contributions from different modes with symme-

tries given by irreducible representations of the parent space

group. One can then distinguish primary and secondary

(induced) distortions with different symmetries, which will

have in general quite different weights in the structure, and
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will respond differently to external perturbations. In general,

the use of symmetry-adapted modes in the description of

distorted structures introduces a natural physical hierarchy

among the structural parameters. This can be useful not only

for investigating the physical mechanisms that stabilize these

phases but also for pure crystallographic purposes. The set of

structural parameters used in a mode description of a

distorted phase is in general better adapted for a controlled

refinement of the structure, or for instance for comparative

studies between different materials.

The theoretical basis of symmetry-mode analysis of

distorted structures and its practice is well documented (see,

for instance, Stokes et al., 1991; Hatch & Stokes, 2001). But

despite its obvious advantages the use of symmetry-adapted

modes is still scarce in crystallographic studies of distorted

structures. Examples where this approach is applied in a

quantitative and systematic form regularly appear in the

literature but they represent a minority within the large

amount of structural studies of distorted structures. For many

years there has been one clear reason for this situation:

namely, the mode decomposition analysis in non-trivial cases

required a deep knowledge of group theory and a consider-

able calculation effort for each specific case. In more recent

years this situation has changed; free computer programs have

been developed allowing fast and automatic symmetry-mode

analyses [BasIreps (Rodrı́guez-Carvajal, 1993), SIMREF

(Ritter et al., 1998), SARAh (Wills, 2000), SYMMODES

(Capillas et al., 2003), MODY (Sikora et al., 2004)]. These tools

have focused on the calculation of a basis of distortion modes

relevant in each case. However, this has usually been done

within the reference of the parent structure, without using the

space-group symmetry of the distorted structure in an explicit

form. This has implied in general a formalism and para-

meterization quite distant from the usual crystallographic

description, and has hampered its use among crystal-

lographers.

This situation has improved in recent years with new free

software [ISODISPLACE (Campbell et al., 2006) and

AMPLIMODES (Orobengoa et al., 2009)]. In particular, we

have made available in the Bilbao Crystallographic Server

(Aroyo, Kirov et al., 2006, Aroyo, Perez-Mato et al., 2006) a

tool (AMPLIMODES) that allows the automatic mode

decomposition of any distorted structure (Orobengoa et al.,

2009). The program provides, apart from a basis of symmetry

modes, their amplitudes in the distorted structure. An

important feature of the program is that the parameterization

of the structural distortion is carried out in a form that is close

to the conventions of crystallography. Modes are given in

terms of relative displacements for the asymmetric unit of the

distorted phase, such that the actual atomic positions

describing the structure in a conventional form are readily

obtained from the list of basis modes and their amplitudes. By

this means we pretend to introduce a mode parameterization

that facilitates a straightforward switch from the symmetry-

mode approach to the conventional description of a structure,

and hopefully will help to standardize and generalize its use in

crystallographic studies.

A further step in this direction has been adapting the

refinement programs FullProf (Rodrı́guez-Carvajal, 1993) and

AMPLIMODES for their combined use, so that now FullProf

can directly use the output of AMPLIMODES and refine

distorted structures using as refinable parameters the ampli-

tudes of a basis of symmetry modes. The potential of the

symmetry-mode approach for the determination of pseudo-

symmetric or distorted structures, with the introduction

among the structural parameters of a strong hierarchy and the

reduction of correlations, has recently been demonstrated for

a specific case (Campbell et al., 2007). The automatic combi-

nation of these two freely available programs should facilitate

and extend the application of the direct symmetry-mode

refinement of distorted structures, advancing in the develop-

ment of a standardized quantitative ‘mode crystallography’.

Another important development that has taken place in

the last decade is the generalization and extensive use of ab

initio density-functional-theory (DFT) calculations and simu-

lations in the investigation of the structure and properties

of ferroic materials and distorted structures in general. A

systematic use of symmetry-mode considerations would in

general be convenient both for the design and analysis of these

calculations. It can help both to optimize the calculations and

to resolve the different relevant degrees of freedom, distin-

guishing marginal features from fundamental ones. But, as in

the case of the experimental investigations, proper use of

symmetry-mode analyses is seldom found in this rapidly

growing research field.

Within this context and in the light of the new computer

tools mentioned above, we review in this article the symmetry-

mode approach to the analysis of distorted structures,

thoroughly discussing a series of examples. By this means, the

virtues and wide possibilities of the analysis of distorted

structures in terms of symmetry-adapted modes is illustrated.

All the examples presented here have been worked out using

the program AMPLIMODES (Orobengoa et al., 2009) and

other tools of the Bilbao Crystallographic Server (Aroyo,

Kirov et al., 2006, Aroyo, Perez-Mato et al., 2006).

2. Symmetry-mode description of distorted structures

We review in this section the basic features of the symmetry-

adapted mode description of distorted structures, introducing

the notation and parameterization employed. In order to

simplify the notation, we will avoid when possible any explicit

indication of the parameters describing the symmetry prop-

erties of the modes (wavevectors, wavevector stars etc.). Thus,

we reduce the notation to the basic features which are really

needed in a practical case, assuming that we have some

computing tool to obtain a valid basis of symmetry-adapted

modes, given in the crystallographic format explained below.

A more practical introduction with additional examples of the

notation used here can be found by Orobengoa et al. (2009).

For an extended review of the group theory of displacive

modes, see, for instance, Izyumov & Syromyatnikov (1990)

and Stokes et al. (1991).
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The distortion relating a parent structure with the actual

displacively distorted structure of lower symmetry can be

deconvoluted into two parts:

(i) A set of atomic displacements, which may break some

translational symmetry but keep the metrics of the underlying

parent lattice, so that the basis vectors of the resulting new

Bravais lattice are exactly given by some integer combination

of the primitive unit-cell basis vectors of the parent structure.

(ii) A strain of the parent lattice mentioned in (i).

This separation into two parts corresponds to the distinction

of the elastic degrees of freedom from the internal atomic

degrees of freedom in the structure, and is done automatically

if the atomic displacements and positions are expressed in

relative coordinates with respect to the cell parameters, as

usually done in crystallography.

In general, for full consistency and formal rigor (ortho-

gonality properties of modes etc.), the mode analysis should

be performed assuming that the relative coordinates of the

distorted structure correspond to step (i) above, i.e. to a

structure with an unstrained lattice, so that its unit cell, in

general a supercell, perfectly matches that of the parent

structure. The additional strain present in the real structure

can be added automatically a posteriori by taking the real unit

cell while keeping the same relative coordinates.

Let r0ð�Þ be the positions of the atoms � (� ¼ 1; . . . ; s)

within an asymmetric unit of the parent structure with space

group G. The asymmetric unit of the observed distorted

structure with lower space group H, subgroup of G, will in

general have a larger number of atoms owing to the splitting

of the Wyckoff orbits of the higher-symmetry space group

(Wondratschek, 1993). Its atomic positions can then in general

be expressed as

rð�; iÞ ¼ r0ð�; iÞ þ uð�; iÞ ð1Þ

where r0ð�; iÞ (� = 1; . . . ; s; i = 1; . . . ; n�) are the corre-

sponding atomic positions in the parent structure, expressed in

the setting of the low-symmetry space group, with the index i

enumerating the formally split atomic orbits coming from a

single Wyckoff orbit in G.

The set of atomic displacements uð�; iÞ within an asym-

metric unit of the distorted structure, with symmetry given by

space group H, fully defines the displacive distortion relating

both structures. In general, it can be expressed as a linear

combination of the contributions of a basis of symmetry-

adapted modes,

uð�; iÞ ¼
P
�;m

A�;m"""ð�;mj�; iÞ: ð2Þ

The indices � and m label all possible distinct allowed

symmetry-adapted distortion modes in the chosen basis. In

short, we shall call these modes basis modes. � stands for the

possible different mode symmetries, while m (m = 1; . . .; n�)

enumerates the possible different independent modes for a

given symmetry. The contribution of each mode is separated

into an amplitude A�;m and a set of atomic displacements """
normalized within a primitive unit cell, both being real

quantities. The atomic displacements """ for a given basis mode

"""(�;m) form its so-called polarization vector, that describes

the corresponding set of correlated relative atomic displace-

ments. The set of displacements """(�;mj�; i) within the

asymmetric unit of the H structure, i.e. with � = 1; . . .; s; i =

1; . . .; n�, define unambiguously the polarization vector of the

corresponding symmetry mode (�;m). The displacements of

the remaining atoms within theH unit cell are obtained by the

symmetry operations of the space group H that relate these

atoms with those in the asymmetric unit. By definition, each of

the modes in equation (2) separately maintains at least the

symmetry given by the space group H. Therefore, the displa-

cement of an atom related by an operation (R; t) of H with

atom (�; i) in the asymmetric unit will be given by

R"""ð�;mj�; i). The polarization vector """ð�;mÞ defines the

symmetry-adapted basis mode (�;m) except for an arbitrary

amplitude; therefore we will use in the following the terms

mode and mode polarization vector as essentially synonymous.

We choose the polarization vectors of the basis modes in (2)

normalized within a primitive unit cell of the H lattice, i.e.

P
�;i

multð�; iÞj"""ð�;mj�; iÞj2 ¼ 1: ð3Þ

The symmetry relation mentioned above permits the reduc-

tion of the sum in (3) to the asymmetric unit by considering

the multiplicity multð�; iÞ (the multiplicity within a primitive

unit cell for the space groupH) of the corresponding Wyckoff

positions. It is important that the normalization in (3) is

performed with the mode displacements expressed in an

absolute length scale. In addition, the basis modes introduced

in (2) are chosen orthogonal, so that their polarization vectors

fulfill
P
�;i

multð�; iÞ"""ð�;mj�; iÞ � """ð�0;m0j�; iÞ ¼ ���0�mm0 : ð4Þ

This orthogonality is automatically satisfied by modes of

different symmetry, while in the case of modes of the same

symmetry a systematic orthogonalization procedure can be

applied. Note that this implies that the set of symmetry-

adapted modes is not unique and a certain arbitrary choice

must be made for any practical calculation.

The displacements of the atoms in each Wyckoff orbit of the

parent structure form an invariant subspace within the space

of the structural distortions for all symmetry operations,

so that the symmetry-adapted basis modes can be chosen

considering separate basis modes for each atomic Wyckoff

orbit of the parent structure, i.e. """ð�;mj�; iÞ = 0 for all �
except a specific one. In addition, the symmetry constraints of

the polarization vector of a given mode only depend on the

type of Wyckoff orbit, so that the polarization vectors of the

basis modes can be chosen identical for all orbits corre-

sponding to the same Wyckoff position. Hence, the index m in

the mode basis f"""ð�;mÞg enumerating the modes associated

with the same symmetry can be decomposed into two labels:

one indicating the atom representative � of the set of the

parent-symmetry-related atoms having displacements for this

mode, and an additional index for further enumeration of the

modes of the same symmetry and the same atoms. We will
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maintain, however, for simplicity whenever possible a single

label m as a short symbolic notation.

The maximum number of modes that can be included in (2)

coincides with the number of free atomic positional para-

meters necessary to describe theH structure in a conventional

form, i.e. with the number of (H-symmetry allowed) free

parameters in the set of atomic displacements fuð�; iÞg.

Expression (2) is then in fact a change of basis in the mathe-

matical vector space of structural parameters describing the

structural distortion, i.e. a linear transformation between the

atomic positional parameters fuð�; iÞg that define the atomic

positions in the H structure and the amplitudes fA�;mg of the

chosen basis of symmetry-adapted modes. It is important to

stress that the dimension of these amplitudes A�;m is length.

Therefore, they can be expressed for instance in angstroms

and the magnitude of different distortion modes present in a

distorted structure can be directly compared even if they

represent collective atomic displacements of very different

kinds. The values of the amplitudes A�;m can be readily

obtained from the set of atomic displacements fuð�; iÞg once

the basis of symmetry-adapted modes """ð�;mÞ has been

chosen. Using their orthonormality properties, a simple scalar

product of the distortion with each normalized mode of the

basis provides the corresponding amplitude,

A�;m ¼
P
�;i

multð�; iÞ"""ð�;mj�; iÞ � uð�; iÞ: ð5Þ

The symmetry of each basis mode """ is characterized by an

irreducible representation (irrep) of the space group G,

defining its transformation properties for the operations of the

high-symmetry group G, plus generally some additional

restrictions such that the mode keeps the observed symmetry

H. In general each basis mode in (2) maintains in the structure

a symmetry that is intermediate between G and H (including

H and G themselves). In other words, its isotropy subgroup

(Jaric & Senechal, 1984; Hatch & Stokes, 1985) is in general a

supergroup of H. This implies that the basis modes in (2) are

normally restricted to a specific subspace within the repre-

sentation space associated with their irrep. As this additional

restriction is always present if we are working with a specific

space group H, the irrep � associated with the mode can be

used as a single label for describing its symmetry, with the

additional restriction (forced by the invariance with respect to

the space group H) left implicit.

The distortion modes with isotropy group equal toH can be

called primary, while those with isotropy groups given by

subgroups of G which are distinct supergroups ofH are usually

termed secondary. A primary distortion mode is sufficient to

produce the observed symmetry break between the parent

and the observed structure, while secondary distortion modes

alone would yield a higher symmetry. Trivial examples of

secondary distortion modes are those that maintain the

symmetry of the parent structure, i.e. they transform according

to the identity irrep. This type of secondary symmetry mode

always exists except if all the atoms in the parent structure are

located in special positions with all their coordinates forced to

special values.

The determination of the amplitudes A�;m of the symmetry-

breaking modes does not require knowing a specific ‘real’

parent structure. Only the amplitudes of modes transforming

according to the identity irrep, i.e. those that do not break the

space group and are therefore already allowed in the parent

structure, depend on the specific atomic coordinates of the

parent structure. A change in the atomic coordinates that are

variable under space group G only introduces additional

atomic displacements described by modes that transform

according to the identity irrep. Therefore, the rest of the

distortion, namely the symmetry-breaking distortion, remains

unchanged for any values of these variable coordinates.

Hence, the calculation of the amplitudes A�;m of the

symmetry-breaking distortion modes only requires a minimal

knowledge from the high-symmetry structure, namely the set

of atoms in its asymmetric unit, their type of Wyckoff position

and their correspondence with the atoms in the distorted

structure. This association between the atoms in the high- and

low-symmetry phases is necessary for the calculation of the set

of displacements uð�; iÞ, but for this purpose a rough

approximate guess of the crystallographic free coordinates of

the atoms in the parent structure is in general sufficient.

Some ambiguity in the results of the mode decomposition

occurs if the distorted phase is polar. The set of atomic

displacements relating the parent and the distorted structure

includes in general a global translation of the crystal that

depends on the (arbitrary) choice of origin of the polar

structure. A convenient origin choice is the one that makes

this global translation zero. This is the choice made in all

analyses of polar structures discussed in this article.

It is also very convenient to express the total distortion as

a combination of a single distortion mode for each of the

allowed irreps,

uð�; iÞ ¼
P
�

A�eð�j�; iÞ: ð6Þ

The amplitudes A� are given by ð
P

m A2
�;mÞ

1=2, while the

corresponding normalized polarization vector eð�Þ is deter-

mined by the linear combination of the basis modes """ð�;mÞ,

with fixed �, realized in the structure

eð�j�; iÞ ¼
P
m

a�;m"""ð�;mj�; iÞ ð7Þ

with

a�;m ¼ A�;m=
�P

m

A2
�;m

�1=2
:

The distortion mode of symmetry � present in the structure

can therefore be described by a global amplitude A� and an n�-

dimensional normalized polarization vector with components

fa�;mg in the working basis f"""ð�;mÞg. The components fa�;mg

define the direction taken by the observed distortion in the n�-

dimensional space of allowed � distortions. The set of ampli-

tudes fA�;mg are indeed the components of an n�-dimensional

vector expressed in an orthonormal basis, and any possible

distortion � of the parent structure can be expressed by an

amplitude A� and the normalized vector fa�;mg.
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While the polarization vectors """ð�;mÞ of the symmetry-

adapted basis only depend on the symmetry properties of the

irrep � and include some arbitrary choice, the polarization

vectors eð�Þ describing the � distortion are specific for each

concrete structure. We shall call these system-dependent

symmetry-adapted global distortion modes, present in the

distorted structure, irrep distortion components, or simply

irrep distortions, to be distinguished from the irrep basis

modes """ð�;mÞ. Their amplitudes A� define the global ampli-

tude of each irrep distortion in the structure and will vary with

external perturbations or with changes of the thermodynamic

variables of the system. On the other hand, the corresponding

polarization vectors eð�Þ are expected to be weakly dependent

with respect to external fields, and among isomorphic mate-

rials. In many cases they can be related to low-energy static

normal modes of the system (see x4 and x11) that characterize

not only the free-energy minimum realized by the observed

phase but also the low-energy arrangements around this

minimum where the system may move with relatively low

energy cost.

A quantitative assessment of the similitude of the

polarization vectors of the irrep distortions of the same

symmetry present in different structures can be readily

made by calculating their scalar product. If the two

distortions are expressed by their components {a�;m}

and fa0�;mg, using equivalent bases, then this scalar

product is just
P

m a�;ma0�;m.

3. Example of the orthorhombic ferroelectric
phase of BaTiO3

Barium titanate, one of the most studied ferroelectrics,

is known to have a parent phase having Pm3m

symmetry and three consecutive ferroelectric phases of

different symmetries as temperature is lowered (Lines

& Glass, 1977). In particular, it has an intermediate

orthorhombic phase with space group Amm2 in the

temperature interval [183 K, 273 K] (Tomaszewski, 1992),

which we consider here as a first example.

Without including the orthorhombic strain, the space group

Amm2 of the orthorhombic phase of BaTiO3 is related to that

of its cubic phase by the transformation (c, a� b, aþ b;

0; 0; 0).1 The reported structure (Kwei et al., 1993) of this

orthorhombic phase of BaTiO3 is reproduced in Table 1 and

shown in Fig. 1. The maximum atomic displacement in the

distortion with respect to the cubic perovskite phase is smaller

than 0.13 Å. The number of atomic positional parameters in

the structure is five, but, as the structure is polar along z, only

four of them are really independent, owing to the arbitrariness

of the origin along z. Before performing the mode decom-

position, as discussed in the previous section, we shift the

origin of the published Amm2 structure along the polar

direction so that the atomic displacements relating both

structures do not include a global translation. This shift has

already been made in the structure given in Table 1. The

atomic displacements relating the Amm2 structure with the

parent perovskite structure are then readily obtained from the

comparison of the asymmetric unit of the Amm2 structure

with that of the cubic parent phase expressed in the same

setting (the reference structure), which is also listed in Table 1.

The Amm2 distortion decomposes into two distortion

modes of different symmetry corresponding to the

irreps GM4� and GM5�.2 Both irreps have Amm2 as

isotropy subgroup. The space of the GM4� distortion is four-

dimensional while the GM5� distortion subspace is one-

dimensional (n� = 4 and 1 for GM4� and GM5�, respec-

tively). A basis of five symmetry-adapted modes """ is listed in

Table 2. The polarization vectors of the GM4� modes for Ba

and Ti are equal and correspond to z displacements of 1 Å,
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Table 1
Asymmetric unit of the Amm2 structure of BaTiO3 at 190 K according to Kwei et
al. (1993), compared with the reference structure, i.e. the Pm3m parent structure
expressed in the same setting.

The unit cell of the reference structure is used for translating the atomic displacements
into absolute values. Note the splitting of the oxygen orbit in the orthorhombic space
group. The origin of the published Amm2 structure has been shifted along z so that the
atomic displacements relating both structures do not include a global translation.

Amm2 phase
(a = 3.9828, b = 5.6745, c = 5.6916 Å)

Pm3m phase in Amm2 setting
(reference structure)
(a = 4.006, b = 5.665, c = 5.665 Å)

Atom
Wyckoff
position x y z x y z

Ba 2a 0.0 0.0 0.00508 0.0 0.0 0.0
Ti 2b 0.5 0.0 0.5221 (5) 0.5 0.0 0.5
O1_1 4e 0.5 0.2561 (3) 0.2394 (4) 0.5 0.25 0.25
O1_2 2a 0.0 0.0 0.4941 (6) 0.0 0.0 0.5

Figure 1
Projection along the x axis of the Amm2 structure of BaTiO3 at 190 K,
according to Kwei et al. (1993).

1 Throughout the paper the transformation between the conventional settings
of the high- and low-symmetry space groups will be given in this form, where
the first part indicates the basis vectors a0; b0; c0 of the subgroup in terms of
those of the supergroup a; b; c, while the second part defines its origin shift in
the (a; b; c) basis.
2 We follow in the whole article the irrep notation of ISOTROPY (Stokes &
Hatch, 2002), which is essentially that of Cracknell et al. (1979). The irreps at
the � point will be labeled with the symbol GM, instead of the Greek letter, to
simplify the notation.



while for the O atoms there are two independent GM4�

modes that can be chosen as shown in Table 2. The first

of these two oxygen modes involves displacements (in

angstroms) of (0, 1=
ffiffiffi
8
p

, 1=
ffiffiffi
8
p

) for O1_1 and (0, 0, 1=
ffiffiffi
2
p

) for

O1_2, while for the second one only O_1 in the asymmetric

unit has a non-zero displacement given by (0,�1=2, 1=2). Note

that the modes for Ba and Ti are described by a single three-

dimensional vector as their orbit is not split by the symmetry

break, while in the case of the O atoms the basis modes are

given, in general, by two three-dimensional vectors, one for

each oxygen, as they merge into a single orbit in the parent

symmetry. The modes in Table 2 are expressed in relative units

with respect to the unit cell of the reference structure for

practical purposes.

The amplitudes for the five modes listed in Table 2 can be

calculated using equation (5). The global amplitudes of the

GM4� and GM5� distortions result to be 0.165 (3) Å and

0.006 (3) Å, respectively [see Orobengoa et al. (2009) for more

details of the calculation]. These amplitudes can be obtained

from the data in Tables 1 and 2. Substracting the reference and

the experimental structures of Table 1, the atomic displace-

ments are derived. Calculating their scalar product (in abso-

lute units) with the basis modes of Table 2, as indicated in

equation (5), the amplitudes of the basis modes are obtained,

and from them the amplitudes of the normalized polarization

vectors can be immediately derived [see equation (7)]. The

distortion GM5� is therefore more than 25 times smaller than

the distortion GM4�, which is the polar one, responsible for

the macroscopic polarization. Fig. 2(a) depicts the polarization

vector of the distortion mode GM5�, which is fully deter-

mined by symmetry and is listed in Table 2. It is a non-polar

mode, totally alien to the ferroelectric instability. Its much

smaller weight in the structure is fully consistent with the

physical origin of this phase. In fact, the amplitude of mode

GM5� is so small that its contribution to the actual values of

the atomic positions is very close to their standard deviations.

The extremely small value of the GM5� distortion implies

that the structure has some ‘hidden’ non-crystallographic

approximate correlation among its atomic coordinates. This

can be clearly seen by inspecting in Table 3 the polarization

vector of the GM4� distortion mode present in the structure.

The five non-zero displacement components in this table are

not independent but are related by three relations: (i) the

absence of global translation, (ii) normalization and (iii)

GM4� symmetry. More specifically, the GM4� character of

the mode forces the following relation among the components

of the oxygen displacements: �yO1 + �zO1 � �zO2 = 0. These
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Figure 2
Scheme of the polarization vectors (projected on the plane yz) of the
distortions GM5� (a) and GM4� (b) present in the Amm2 structure of
BaTiO3. The figure shows in each case the distorted structure for an
exaggerated amplitude of the mode. Also, schematic arrows indicating
the atomic displacements are depicted within a single unit cell.

Table 3
Polarization vector (normalized to 1 Å) of the polar GM4� distortion
mode present in the orthorhombic phase of BaTiO3.

The mode is defined using the asymmetric unit of the reference structure and
unit cell indicated in Table 1. Displacements are expressed in relative units.
This polarization vector corresponds to the combination of the four GM4�
basis vectors described in Table 2 with amplitudes 0.17, 0.76, �0.25 and �0.57
(in the same order as in Table 2).

Atom �x �y �z

Ba 0.0000 0.0000 0.0308
Ti 0.0000 0.0000 0.1339
O1_1 0.0000 0.0349 �0.0665
O1_2 0.0000 0.0000 �0.0317

Table 2
Basis of symmetry modes of the parent structure Pm3m of BaTiO3,
restricted to the isotropy subgroup Amm2.

The atomic displacements for the polarization vector of each mode are
expressed in relative units with respect to the reference unit cell, indicating
only the displacements of the Amm2 asymmetric unit (see Table 1). Modes are
normalized within a primitive unit cell of the Amm2 structure. The modes are
labeled by their irrep, the atom representative of the parent Wyckoff orbit
involved in the mode and an additional numerical index in the case of the
existence of several independent modes for the same irrep and the same atom.

Mode �x �y �z

GM4�, Ba Ba 0.000000 0.000000 0.176512

GM4�, Ti Ti 0.000000 0.000000 0.176512

GM4�, O1, 1 O1_1 0.000000 0.062406 0.062406
O1_2 0.000000 0.000000 0.124813

GM4�, O1, 2 O1_1 0.000000 �0.088256 0.088256
O1_2 0.000000 0.000000 0.000000

GM5�, O1 O1_1 0.00000 �0.062406 �0.062406
O1_2 0.00000 0.00000 0.124813



three relations reduce the number of adjustable free para-

meters of the GM4� polarization vector to two, which with its

amplitude and the single parameter describing the GM5�

distortion make the expected total of four degrees of freedom

in the structure. As the GM5� distortion mode is very small,

the GM4� symmetry is fulfilled to a good approximation by

the total distortion, so that the experimental coordinates of

the O atoms satisfy yO1 + zO1 � zO2 ’ 0 (for the reported

structure yO1 + zO1 � zO2 = 0.0014 � 0.0008). This is a non-

trivial non-crystallographic approximate correlation, which is

a direct signature of the physical mechanism responsible for

the stabilization of this phase, namely the thermal instability of

a GM4� polar mode.

The polar GM4� distortion mode present in the Amm2

structure of BaTiO3 is depicted in Fig. 2(b). Although the

distortion associated with this phase is usually described as a

simple change of the spontaneous polarization (order para-

meter) from the direction (1, 0, 0) in the tetragonal phase to

the (1, 1, 0) direction in this orthorhombic one (Lines & Glass,

1977), it is remarkable that the scheme of correlated atomic

displacements is rather complex, and their relation with those

associated with the tetragonal ferroelectric phase are not

obvious. However, indeed the GM4� distortion shown in

Table 3 and Fig. 2(b) is closely connected with the simple polar

distortion along a tetragonal axis present in the tetragonal

phase. A quantitative comparison of both distortions can be

made if they are considered in the common reference of the

parent phase.

Note that in this example both irrep distortions could be

considered primary from the symmetry viewpoint, as both

have as isotropy or invariance subgroup the observed space

group. From a structural viewpoint it is, however, the

comparison of the amplitudes of the two irrep distortions in

the experimental structure that shows the primary role played

in the stabilization of the phase of one of them.

4. Hierarchy of modes

The large difference in amplitude of the two distortion modes

of different symmetry present in the Amm2 structure of

BaTiO3 is a simple example of a property that happens rather

systematically in all kinds of distorted structures. If a structure

is pseudosymmetric, the minimum of the free energy corre-

sponding to this phase within the configuration space of the

system should be located in the proximity of a saddle point

corresponding to the higher-symmetry configuration. The

closeness of both points allows in general a description of this

energy minimum by a truncated Taylor expansion around the

saddle point associated with the high-symmetry configuration.

This Taylor expansion expressed in terms of the amplitudes of

normal static distortion modes, i.e. diagonal for the second-

order terms of the expansion, is the starting point of the

Landau theory of structural phase transitions (Landau &

Lifshitz, 1969). This topological property of the energy land-

scape around distorted structures is, however, rather general,

and can be used to characterize the structural properties of a

distorted structure, independent of the existence or not of a

phase transition.

The first terms of a Landau-type expansion around the

unstable high-symmetry configuration, with space group G and

close to the distorted phase with space group H (subgroup of

G), can be written as

E ¼ E0 þ
P
�m�GM1;m þ

1
2

P
��;n

P
j �

2
�;n;j

� �
þ . . . ; ð8Þ

where the mode amplitudes ��;n;j in (8) correspond to all

displacive normal modes. These are classified according to

their irrep � (of G), a multiplicity label n, and a third index j for

enumerating the different degenerate modes associated with

the same irrep if this latter is multidimensional, so that several

modes (same stiffness coefficient ��;n) exist for the same irrep.

All symmetry-breaking modes, i.e. all modes not transforming

according to the identity representation, do not have linear

terms in the energy expansion (8) (the energy of a G config-

uration is necessarily extremal with respect to G symmetry-

breaking distortions). The linear terms in (8) are therefore

reduced to the distortion modes allowed in the space group G,

i.e. those transforming according to identity irrep GM1, and

therefore allowed to be non-zero in the G configuration.

We choose the normal-mode amplitudes ��;n;j in (8) real,

and they refer to modes that, apart from being symmetry-

adapted, are also eigenmodes of the matrix of second deriva-

tives of the free energy with respect to the atomic displace-

ments. We can say that within the existing freedom in the

choice of a symmetry-adapted basis the set of normal modes

corresponding to the amplitudes ��;n;j is a specific choice that

apart from being a symmetry-adapted is also a physically

adapted basis. These normal modes decompose the space of

structural degrees of freedom into collective modes that are

energetically independent in the harmonic approximation,

their stiffness coefficients ��;n being a measure of their energy

cost. They are eigenmodes of the matrix of atomic force

constants. To distinguish this privileged basis of symmetry-

adapted modes, we shall call them eigenmodes.

At least one of the stiffness coefficients ��;n in (8) must be

negative to make the high-symmetry configuration unstable.

The anharmonic terms of lowest order, subsequent to those

shown in (8), are then sufficient to explain the off-center

minima corresponding to the distorted structure. This

implies in general that the observed structural distortion

corresponding to these off-center minima will contain mainly

low-energy eigenmodes. Among them one can distinguish

the contribution of primary and secondary eigenmodes, but

this distinction includes now a physical condition to the

considerations in x2, where only symmetry properties were

considered.

Primary eigenmodes. Primary eigenmodes are in general

those for which their condensation is sufficient to explain the

observed symmetry break between the parent and the

observed phase and are intrinsically unstable (their stiffness

coefficient is negative), while secondary eigenmodes are those

that are only present as an induced effect. Within this view-

point, primary and secondary eigenmodes can be of the same

lead articles

564 J. M. Perez-Mato et al. � Mode crystallography Acta Cryst. (2010). A66, 558–590



symmetry, their difference being their intrinsic instability or

stability (see example in previous section).

Secondary eigenmodes. Secondary eigenmodes, despite

having in general positive stiffness coefficients and hence

being hard modes, appear in the total distortion because

they have a symmetry-allowed anharmonic coupling with

the primary ones of type �sP
ðmÞð�p1; . . . ; �pnÞ where PðmÞ is a

polynomial term of order m in the amplitudes of the primary

eigenmodes ð�p1; . . . ; �pnÞ. The minimal allowed order m has

been called the faintness index (Aizu, 1974) of the corre-

sponding secondary mode. Neglecting higher-order terms, this

lowest coupling is sufficient for producing a non-zero ampli-

tude of a secondary mode at the energy minimum, if the

primary distortions are non-zero,

�s ’ ð1=�sÞP
ðmÞð�p1; . . . ; �pnÞ; ð9Þ

where �s is the stiffness coefficient of the mode amplitude �s in

(8). All secondary eigenmodes present in the distorted phase

of space group H are necessarily coupled with the primary

ones with terms of this type, i.e. linear in the amplitude of the

secondary eigenmode. Any eigenmode having as isotropy

group or invariance group a subgroup of G which is a super-

group of H has such coupling terms, and is allowed in the

distorted phase, in accordance with Curie laws (Authier,

2003). Thus this type of coupling is a necessary and sufficient

condition for a mode to be present in the distorted structure.

Within this perspective, the space-group symmetry H asso-

ciated with the distorted structure is just an efficient form of

defining and introducing the symmetry restrictions that all

eigenmodes condensed in the distorted phase should fulfill.

The eigenmodes feEð�; nÞg compatible with the symmetryH

of the distorted phase can be labeled in the same way as we did

with a general symmetry-adapted basis for an H distortion in

(2), and we can express them in terms of the chosen symmetry-

adapted basis,

eEð�; nj�; iÞ ¼
P
m

b
ðnÞ
�;m"""ð�;mj�; iÞ; n ¼ 1; . . . ; n�:

In a shorter vector notation,

eEð�; nÞ ¼
P
m

b
ðnÞ
�;m"""ð�;mÞ; n ¼ 1; . . . ; n� ð10Þ

or

eEð�; nÞ ¼ b
ðnÞ
�;1; b

ðnÞ
�;2; . . . ; bðnÞ�;n�

� �
:

The eigenmodes feEð�; nÞg can be used as a privileged

symmetry and physically adapted basis to describe the irrep

distortions feð�Þg [see equation (6)] present in a distorted

structure,

eð�Þ ¼
P

n

aE
�;neEð�; nÞ: ð11Þ

According to the arguments above, if � is the symmetry of a

primary mode the decomposition (11) will be dominated by

the unstable primary eigenmodes within the set of eigenmodes

eEð�; nÞ of the same symmetry �. The rest of the hard eigen-

modes of the same symmetry � will contribute in general with

much smaller amplitudes, described in a first approximation by

equations of type (9). As can be seen in (9), secondary

eigenmodes with larger stiffness constants are expected to

have smaller amplitudes in the distortion, although the

strength of the coupling with the primary eigenmodes also

plays a role and may alter this general trend.

If � corresponds to a symmetry only associated with

secondary eigenmodes, the static distortion of this symmetry

present in the structure is expected to be much smaller than

the primary one, because of its typical dependence on a power

of the primary-mode amplitudes. The relative weight of the

different eigenmodes of the same symmetry will be essentially

governed by (9), i.e. their relative amplitudes are approxi-

mately inversely proportional to their stiffness, and propor-

tional to their coupling with the primary modes.

Summarizing, the decomposition of a distorted structure in

terms of symmetry modes is expected to show quite different

amplitudes for the different irrep distortions present in the

structure. Distortion modes that are primary from the

symmetry viewpoint will have larger amplitudes and can be

identified in a good approximation with the mode(s) that is

(are) intrinsically energetically unstable and are the origin of

the observed structure (with small corrections owing to the

presence of frozen secondary modes of the same symmetry).

In the case of ambiguity with respect to the possible irrep

associated with the primary distortion, a comparison of their

respective amplitudes is in most cases sufficient for their

identification, and therefore for identifying the mechanism

underlying the stabilization of the phase.

5. An improper ferroelectric: gadolinium molybdate

A ferroelectric is said to be improper if its polar distortion,

responsible for the spontaneous polarization, is a secondary

mode (Toledano & Toledano, 1987). The symmetry of an

improper ferroelectric cannot therefore be explained by the

presence of a polar distortion. This latter is usually not

intrinsically unstable in the parent paraelectric phase and its

appearance in the distorted phase is induced by its coupling

with a primary unstable non-polar distortion mode. The

spontaneous electric polarization in these materials is usually

very small compared with that in proper ferroelectrics, as

expected from its secondary role in the stabilization of the

phase.

Gd2(MoO4)2 is a well known improper ferroelectric

(Dvorak, 1971; Jeitschko, 1972). Its ferroelectric phase (see

Fig. 3) has space group Pba2, with a duplication of the unit cell

(transformation: a� b; aþ b; c; 0; 1=2; 0) with respect to its

parent structure of symmetry P421m, which is stable above

433 K. The maximum atomic displacement in the displacive

distortion is of the order of 0.4 Å. Fig. 4 shows a graph of

maximal subgroups relating the space groups of both phases,

with an indication of the possible irrep distortions of P421m

compatible with these symmetries. As shown in the graph, we

should expect in the Pba2 phase three distortion modes. A

primary one yields directly the observed symmetry and

corresponds to the (physically irreducible) (see, for example,
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Stokes & Hatch, 1988) irrep M2+M4, associated with the point

M (1/2, 1/2, 0) at the border of the Brillouin zone. A second

mode at the center of the Brillouin zone with symmetry given

by irrep GM3, only breaking the symmetry up to the inter-

mediate subgroup Cmm2, is also symmetry allowed and will

also be present as a secondary distortion mode. This second

mode is polar and is responsible for the spontaneous polar-

ization of the Pba2 phase. Finally, there can also be a fully

symmetric GM1 distortion keeping the parent symmetry. The

number of independent symmetry modes corresponding to

these symmetries is 22 and 15 for the M2+M4 and GM3

subspaces, respectively, while the subspace of GM1 distortions

has 14 dimensions, in accordance with the number of free

atomic parameters already present in the parent P421m

structure. In other words, the determination of the M2+M4,

GM3 and GM1 distortions requires 22, 15 and 14 parameters,

respectively, so that their total number is 51, in accordance

with the number of free atomic positional parameters in a

conventional description of the Pba2 structure (Jeitschko,

1972).

A summary of the mode decomposition of the Pba2

experimental structure reported by Jeitschko (1972) is given in

Table 4. Again here the primary distortion is dominant, its

amplitude being more than one order of magnitude larger

than the secondary distortion GM3. In a very good approx-

imation the structure can be described considering only the

M2+M4 and the GM1 distortions, i.e. with a significant

decrease of 30% in the number of positional parameters

compared with a conventional description.

Tables 5 and 6 complete the symmetry-mode description of

the Pba2 structure of Gd2(MoO4)2 in a form following crys-

tallographic conventions. Table 5 lists a Pba2 asymmetric unit,

with the atomic positions corresponding to the reference

parent phase of higher symmetry (Jeitschko, 1972). For this

asymmetric unit, Table 6 lists the atomic displacements in

relative coordinates defining the normalized polarization

vectors of the GM1, M2+M4 and GM3 distortion modes

present in the structure. This information together with the

mode amplitudes in Table 4 is sufficient for obtaining, just by

adding the three sets of displacements, the atomic coordinates

of the asymmetric unit that define the observed Pba2 structure

in a conventional form. This table gives information on the

pattern of correlated atomic displacements associated with the

modes of different symmetry intervening in the distortion.

One can see in Table 6 that the mode GM3 involves mainly

atomic displacements on the plane xy, while the displacements

along z, which are the only ones with polar character, are

much smaller. In fact, considering the very small amplitude of

lead articles

566 J. M. Perez-Mato et al. � Mode crystallography Acta Cryst. (2010). A66, 558–590

Table 4
Summary of the mode decomposition (with respect to its P421m parent
structure) of the Pba2 structure of Gd2(MoO4)2 at 190 K reported by
Jeitschko (1972) (total distortion: 1.63 Å).

K-vector Irrep Direction
Isotropy
subgroup Dimension

Amplitude
(Å)

(0, 0, 0) GM1 (a) P421m 14 0.15
(0, 0, 0) GM3 (a) Cmm2 15 0.07
(1/2, 1/2, 0) M2+M4 (a, b) Pba2 22 1.62

Table 5
Reference structure for Gd2(MoO4)2 corresponding to the P421m phase
in the Pba2 phase setting (a = 10.455281, b = 10.455281, c = 10.67 Å).

Atom
Wyckoff
position x y z

Gd1 4c 0.18744 0.50000 0.73762
Gd1_2 4c 0.00000 0.81256 0.26238
Mo1 4c 0.20663 0.50000 0.35695
Mo1_2 4c 0.00000 0.79337 0.64305
Mo2 4c 0.25000 0.25000 0.00000
O1 4c 0.19520 0.50000 0.51950
O1_2 4c 0.00000 0.80480 0.48050
O2 4c 0.12890 0.00000 0.31090
O2_2 4c 0.50000 0.87110 0.68910
O3 4c 0.13890 0.13720 0.70050
O3_2 4c 0.36110 0.36280 0.70050
O3_3 4c 0.63720 0.86110 0.29950
O3_4 4c 0.86280 0.63890 0.29950
O4 4c 0.13770 0.17700 0.09550
O4_2 4c 0.36230 0.32300 0.09550
O4_3 4c 0.67700 0.86230 0.90450
O4_4 4c 0.82300 0.63770 0.90450

Figure 4
Graph of maximal subgroups relating the space groups of the parent and
distorted phases of Gd2(MoO4)2. For each subgroup any irrep compatible
with it is indicated, together with the dimension of the corresponding
distortion subspaces.

Figure 3
Structure of Gd2(MoO4)2 projected on the xy plane in the parent P421m
phase (a), and in the distorted Pba2 phase (b). The smaller tetragonal unit
cell of the parent phase is indicated in (a).



this GM3 distortion, its z displacements, except in the case of

the Mo atoms, are practically zero within their experimental

error. Jeitschko (1972) already pointed out that the estimated

value of the spontaneous polarization in this structure

considering nominal charges was smaller than its standard

deviation.

The fact that the GM3 atomic displacements along z are

practically negligible does not mean, however, that the atoms

remain static along this direction. They displace indeed along

this direction, but following essentially the symmetry pattern

corresponding to the mode M2+M4, as shown in Table 6. This

means that the total structure has some approximate hidden

non-crystallographic atomic correlations which are satisfied

within experimental resolution, similar, as it happens, to the

orthorhombic phase of BaTiO3 discussed in x3.

6. A strongly distorted ferroelastic: leucite

We consider now the structure of leucite. This mineral, with

formula KAlSi2O6, is tetragonal (I41=a) at room temperature,

but becomes cubic (Ia�33d) above approximately 940 K [see

Palmer et al. (1997) and references therein]. An intermediate

phase in a very narrow temperature interval with space group

I41=acd has also been reported (Lange et al., 1986; Palmer et

al., 1997). There is a group–subgroup relation between the

room-temperature I41=a and the high-temperature symmetry

Ia3d, but, as can be seen in Fig. 5, the displacive distortion

relating both phases is very large. The connected framework

of SiO4 and AlO4 tetrahedra suffer a strong rearrangement

when passing from the cubic to the tetragonal configuration

with a collapse of the cation-stuffed trigonal channels of the

cubic phase. In this case the maximum atomic displacement is

of the order of 1 Å, a value considerably larger than in the

examples discussed above. Nevertheless, we will see in the

following that despite the large magnitude of the distortion it

still can be rationalized in terms of modes. The temperature

evolution of the structure includes the variation of two

distortion modes with different symmetry, and as a conse-

quence having quite different temperature behavior.

The number of atoms per primitive unit cell is the same in

both phases, and therefore only modes at the Brillouin-zone

center, i.e. modes keeping the lattice periodicity, are involved

in the distortion. It suffices to introduce the experimental

structures (Palmer et al., 1997) of the two phases in the

program AMPLIMODES, together with the transformation

relating the settings of the two space groups (a; b; c; 1=2; 0; 0),

to obtain the amplitudes and the specific features of the irrep

distortions present in the tetragonal phase. A scheme of the

group–subgroup tree relating the parent and distorted

symmetry is shown in Fig. 6. There is a primary distortion

(irrep GM4+) which yields the observed symmetry break

between the two phases, plus a secondary mode (irrep GM3+)

with a higher isotropy subgroup (I41=acd), and the usual full

symmetric distortion mode (irrep GM1+). The 30-dimensional

configuration space of the I41=a structure (30 independent

atomic coordinates define the structure) divides among these
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Figure 5
Structure of leucite (KAlSi2O6) projected along one of its trigonal axis in
its cubic phase. (a) High-temperature Ia3d phase. (b) Room-temperature
tetragonal I41=a phase (Palmer et al., 1997)

Table 6
Polarization vectors of the GM1, GM3 and M2+M4 distortions present in the Pba2 phase of Gd2(MoO4)2.

The atomic displacements for the asymmetric unit listed in Table 5 are listed in relative units with respect to the Pba2 reference unit cell.

GM1 GM3 M2+M4

Atom �x �y �z �x �y �z �x �y �z

Gd1 0.0018 0.0000 �0.0022 0.0007 0.0000 0.0004 0.0000 �0.0029 0.0000
Gd1_2 0.0000 �0.0018 0.0022 0.0000 0.0007 0.0004 0.0043 0.0000 0.0000
Mo1 �0.0035 0.0000 0.0026 �0.0056 0.0000 �0.0069 0.0000 �0.0068 0.0000
Mo1_2 0.0000 0.0035 �0.0026 0.0000 �0.0056 �0.0069 �0.0018 0.0000 0.0000
Mo2 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0057 �0.0048 �0.0044 0.0000
O1 �0.0117 0.0000 �0.0094 �0.0182 0.0000 0.0020 0.0000 �0.0073 0.0000
O1_2 0.0000 0.0117 0.0094 0.0000 �0.0182 0.0020 0.0123 0.0000 0.0000
O2 �0.0036 0.0000 �0.0016 0.0049 0.0000 0.0020 0.0000 0.0043 0.0000
O2_2 0.0000 0.0036 0.0016 0.0000 0.0049 0.0020 0.0037 0.0000 0.0000
O3 �0.0052 �0.0073 �0.0047 �0.0161 �0.0010 0.0017 0.0129 0.0122 �0.0116
O3_2 0.0052 0.0073 �0.0047 0.0161 0.0010 0.0017 0.0129 0.0122 0.0116
O3_3 �0.0073 0.0052 0.0047 0.0010 �0.0161 0.0017 �0.0129 0.0153 �0.0041
O3_4 0.0073 �0.0052 0.0047 �0.0010 0.0161 0.0017 �0.0129 0.0153 0.0041
O4 �0.0171 �0.0063 0.0005 0.0059 �0.0066 0.0010 �0.0062 �0.0029 �0.0015
O4_2 0.0171 0.0063 0.0005 �0.0059 0.0066 0.0010 �0.0062 �0.0029 0.0015
O4_3 �0.0063 0.0171 �0.0005 0.0066 0.0059 0.0010 0.0038 0.0051 0.0015
O4_4 0.0063 �0.0171 �0.0005 �0.0066 �0.0059 0.0010 0.0038 0.0051 �0.0015



three distortion subspaces of 16, 10 and 4 dimensions for

GM4+, GM3+ and GM1+, respectively. Their amplitudes at

room temperature result to be 4.61, 1.82 and 0.41 Å. As

expected, the primary distortion is significantly larger,

although not in such strong proportion as in the other exam-

ples discussed above.

Palmer et al. (1997) made a series of high-resolution powder

neutron diffraction measurements of leucite as a function of

temperature below and above the phase transition around

940 K, and have reported structural models for the material at

various temperatures. It is illustrative to analyze these struc-

tures in terms of modes and observe the temperature behavior

of the three irrep distortions active in the tetragonal phase.

Their amplitudes follow a well behaved smooth temperature

dependence, shown in Fig. 7(a). Note that apart from the

structures determined above room temperature, the study by

Palmer et al. (1997) also determined the structure at 4 K. Even

the amplitudes corresponding to this isolated point at very low

temperature agree with the smooth curves suggested by the

high-temperature data. The available points for the amplitude

of the GM4+ distortion have been fitted to a continuous

function, following the typical law of an order parameter of a

discontinuous phase transition (Dove, 1997). What is espe-

cially remarkable is that the curve fitted to the GM3+ ampli-

tudes is just the square of the curve used for the GM4+

amplitudes, with only a scale factor having been adjusted.

Hence, we are observing a primary component in the struc-

tural distortion behaving as the primary order parameter,

while a second one, weaker but significant, varies its amplitude

as the square of the amplitude of the primary distortion, as

expected for a secondary distortion with faintness index 2 (see

x4). It should be stressed that in general for each individual

atomic position the contributions of the two modes superpose,

and therefore the simple law underlying the thermal evolution

of the structure shown in Fig. 7(a) cannot be directly observed

in the thermal changes of single atomic coordinates or atomic

distances.

One can also follow the temperature variation of the

polarization vectors of the two irrep distortions. The value of

their scalar product, with the one corresponding to the

structure at 4 K used as reference, can be used to monitor its

change. One can see in Fig. 7(b) that the polarization vectors

of both irrep distortions are approximately temperature-

invariant. This means that in each irrep distortion the atoms

follow correlated relative displacements which are common to

the whole temperature range, the temperature variation being

essentially reduced to their global amplitude. This is specially

true for the primary mode. For this mode, except for the points

closer to the transition, the scalar product maintains values

larger than 0.99, and does not decrease in any case below 0.97.

The polarization vector of the secondary distortion GM3+ has

a more significant variation, but is also quite small, except

close to the transition.

The approximate invariance of the polarization vectors of

the irrep distortions can be understood in the light of the

discussion presented in x4. If we consider only the lowest

anharmonic coupling of the secondary normal modes to the

primary one and assume them essentially temperature-

independent as done in Landau theory, the secondary distor-

tion minimizing the free energy will be formed by a linear

combination of secondary normal modes that will be kept

invariant for changes of the temperature and the amplitude of

the primary normal mode. For the primary distortion some-

thing similar happens, except that it is expected to have an

overwhelming proportion of the primary normal mode.

Hence, deviations of the ideal invariance owing to higher-

order anharmonic coupling terms are expected to be smaller.

One may argue that the remarkable ‘rigidity’ of the polar-

ization vectors of the distortion modes is due to the fact that

they correspond to rigid unit modes (RUMs) (Giddy et al.,

1993; Hammonds et al., 1996) of the tetrahedral framework in

the leucite structure. Both irrep distortions can indeed be
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Figure 7
(a) Temperature dependence of the amplitudes of the primary (GM4+)
and secondary (GM3+) distortions in leucite, according to the structures
reported by Palmer et al. (1997). (b) Scalar product of the 16- and 10-
dimensional normalized polarization vectors of the two distortions at
each temperature with the corresponding one in the reported structure
at 4 K.

Figure 6
Graph of maximal subgroups relating the space groups of the parent and
distorted phases of leucite. For each subgroup the irrep yielding this
symmetry is indicated, together with the dimension of the corresponding
distortion subspace.



considered RUMs for the framework of AlO4 and SiO4

tetrahedra. But the primary GM4+ distortion includes a

significant relative displacement of the K cations, and its

participation in the polarization vector is also invariant. We

will see below other examples where connected frameworks of

rigid units do not exist, and nevertheless the property of the

approximate invariance of the polarization vectors of the irrep

distortions is maintained, even between different compounds.

In Fig. 7(b) one can see that the polarization vectors of both

the primary and the secondary distortions have their largest

variation close to the phase transition. We have also observed

this behavior in various other systems. It is not clear if this is a

genuine structural feature or an experimental effect coming

from the intrinsic difficulty of the measurements in the

proximity of a phase transition. It is clear that the experi-

mental uncertainty of the normalized polarization vector

increases as the mode amplitude of the mode decreases. The

relative decrease of the amplitudes does not seem, however,

sufficient to explain this systematic variation of the polariza-

tion vectors when the transition is approached. On the other

hand, it has been shown in many cases that the primary

distortion well below the transition agrees almost 100% with

the primary normal mode calculated by means of ab initio

calculations (see x11). It can be then hardly understood that

this agreement should deteriorate somehow as the system

approaches the transition (genuine critical phenomena are

irrelevant here as the transitions are either discontinuous or

the proximity to the phase transition is not sufficient for these

phenomena to appear). The simple model explaining the

invariance of the polarization vectors of the irrep distortions is

in principle expected to be more appropriate for smaller

distortions. Therefore, we speculate that the significant fluc-

tuations of the distortion polarization vectors close to the

transition points are an indication of a poorer determination

of the structures under these conditions.

It is remarkable that the intermediate phase of symmetry

I41=acd, which has been proposed for a small temperature

interval above 900 K, just before reaching the parent cubic

configuration, would correspond to a primary distortion of

symmetry GM3+. A distortion of this symmetry is also present

at room temperature, but only as a secondary induced

distortion, as discussed above and shown in Fig. 7(a). It is then

rather peculiar to have a distortion of this symmetry acting as

a primary (unstable) mode at higher temperatures. The mode

decomposition of the I41=acd structural model at T = 923 K of

Palmer et al. (1997) yields an amplitude for this distortion of

0.86 Å, also shown in Fig. 7(a). This value is clearly at odds

with the temperature behavior of the amplitude of the GM3+

distortion in the I41=a phase, which shows a fast but smooth

tendency to zero at a temperature around 900 K. The polar-

ization vector of the GM3+ distortion mode in the I41=acd

structural model is in fact very different from the one corre-

sponding to the I41=a phase, indicating that it is a quite

different type of distortion despite having the same symmetry.

A primary mode responsible for a distorted phase is

expected to be intrinsically unstable, with temperature acting

as stabilizing factor, so that in general its disappearance at

lower temperatures is usually caused by its incompatibility

with new stronger instabilities of different symmetry. This is

not the case here, since the phase I41=a produced by the

primary GM4+ distortion mode is compatible with any GM3+

distortion. Of course, there can be exceptional cases of re-

entrant transitions, but this intermediate I41=acd phase would

be even a more exceptional case, since the GM3+ distortion

present would disappear when the system enters the I41=a

phase, although it is fully compatible with this symmetry. We

can therefore conclude that most probably the symmetry and

structural model proposed for this intermediate high-

temperature phase is not correct.

7. Domains and equivalent structures

It is well known that, for a given distorted structure with

symmetry H<G, there is a series of physically equivalent

structures which are crystallographically distinguishable when

referred to the common parent structure, i.e. the so-called

domains, variants or twin-related structures (Janovec & Priv-

ratska, 2003).

If the left-coset decomposition of G with respect to H is

given by

G ¼ Hþ g2Hþ . . .þ gnH; ð12Þ

with n being the index of the subgroup H, the application of

the G operations chosen as coset representatives g2; . . . ; gn on

the distorted structureH produces n� 1 structures equivalent

to the original one, which together with this latter correspond

to the expected n distinct domain configurations. The space-

group symmetries of these n equivalent structures are given by

the space groups Hi, of the same type as H and given by

giHg�1
i . From the viewpoint of the configuration energy map

discussed in x4, it means that there are n equivalent energy

minima around the saddle point associated with the parent

phase, giving place to the multistability or degeneracy of the

distorted phase, with the possibility of switching processes

through external fields between the different equivalent

energy minima.

The mode decomposition as formalized in the previous

sections is restricted to a specific orientation (and origin shift)

between the subgroup H and G, given by the transformation

matrix ðP; pÞ relating the two space groups. This means that

among the possible equivalent orientations and origin rela-

tions between the low- and high-symmetry structures a choice

must be made, and the specific expressions for the polarization

vectors of the irrep distortions describing the structure will

depend on it. The amplitudes of the irrep distortions are,

however, independent of the choice of subgroupH, among the

equivalent ones.

In many cases some coset representatives gi are such that

giHg�1
i ¼ H: ð13Þ

This means that the symmetry of the corresponding domain-

equivalent configuration is described by the same space group

H, and the use of a specific transformation ðP; pÞ between the

parent space group and the space group of the distorted
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structure does not fully specify the domain choice. Domain-

related structures with the same space group H [the same

transformation ðP; pÞ] are distinguished because their mode

decomposition yields irrep distortions with the same polar-

ization vectors but some of them having amplitudes with

opposite sign, or equivalently the polarization vectors of some

irrep distortions have a global change of sign, if by definition

the irrep distortion amplitudes are chosen positive.

If a distorted structure is described by a set of irrep

distortions with amplitudes fA�1;A�2; . . . ;A�sg, and gi is a

coset representative in (12) such that (13) is satisfied, then an

equivalent domain-related structure is obtained considering

the same polarization vectors for the irrep distortions and

transforming the amplitudes through the action of the space-

group operation reduced to a +1 or �1 factor, i.e.

f�1ðgiÞA�1; �2ðgiÞA�2; . . . ; �sðgiÞA�sg, where �jðgiÞ are +1 or �1

according to the transformation properties of each amplitude

given by the corresponding irrep.3 The values of the factors

�jðgiÞ are in general correlated. Those of the secondary modes

can be directly derived from those of the primary modes

through the relation (9) connecting the amplitudes of the

secondary distortions to the primary ones (this equation

considers the lowest coupling terms among primary and

secondary distortions, but the resulting sign correlation is

a symmetry property that is maintained at any level of

approximation). If the distorted structure contains a single

primary distortion, the mode decomposition of the domain-

related configuration will yield a primary distortion with

opposite sign, while secondary distortions will change sign or

not depending on their faintness index (see x4) being odd or

even. If, on the contrary, there are several primary distortions

(with different irreps) in the structure, more than two domain-

equivalent configurations for the same fixed subgroup H exist

[i.e. more than one coset representative gi fulfills (13)], and the

different domains will be distinguished by independent

uncorrelated changes of sign of the different primary distor-

tions, while secondary distortions will have their signs forced

by those of the primary ones according to (9), or similar

generalized equations.

The subset of equivalent domain configurations corre-

sponding to a fixed H and obtained by the allowed changes of

sign of the primary distortions (and correlated ones of the

secondary ones) correspond to some of the different equiva-

lent crystallographic descriptions of the same structure,

obtained by means of transformations belonging to the

Euclidean normalizer of the groupH extended to the possible

specialized metric of the lattice of H, when its strain with

respect to the lattice of the supergroup G is neglected (Koch &

Fischer, 2006).

We can consider two of the previously discussed structures

as simple examples of the above considerations. In the case of

the Amm2 phase of BaTiO3 there are 12 equivalent distorted

structures of this symmetry with respect to the Pm3m perfect

perovskite. They correspond to the six different distinct

subgroups Amm2 of Pm3m belonging to the same conjugacy

equivalence class, and associated with six different orienta-

tions of the rotational operations of the group Amm2 with

respect to the Pm3m setting. Once one of these subgroups has

been chosen by means of the transformation c, a� b, aþ b;

0; 0; 0, the distorted structure can have two equivalent

configurations related by the lost inversion operation, which

can be taken as the coset representative fulfilling (13). The

inversion operation changes the sign of both the primary

polar distortion of symmetry GM4� and the secondary

one GM5�. Hence the two equivalent structures can be

described by opposite amplitudes (AGM4�;AGM5�) and

(�AGM4�;�AGM5�), both keeping unchanged their polariza-

tion vectors. As in a mode decomposition the amplitudes are

usually chosen positive by definition, the change of sign will be

reflected in the polarization vectors considered, which would

be opposite in both configurations. The correlated switch of

the sign of both distortions is consistent with the faintness

index of the GM5� distortion, which is 3, as can be easily

checked using the program INVARIANTS of the package

ISOTROPY (Stokes & Hatch, 2002). Note that this means

that, although an external electric field only couples linearly

with the polar distortion GM4�, it can switch not only this

primary polar mode but also the secondary non-polar one

GM5� through the anharmonic coupling between the two

distortions.

In the second example, gadolinium molybdate, the index of

the subgroup is 4, and we can choose as coset representatives

the following operations: ð1j0 0 0Þ, ð4zj0 0 0Þ, ð1j1 0 0Þ,

ð4zj1 0 0Þ. The rotoinversion operation 4z changes the

orientation of the Pba2 space group, and corresponds to

another choice of the transformation matrix ðP; pÞ. On the

other hand, the lost translation ð1j1 0 0Þ transforms the

distorted structure into its so-called antiphase domain. This

translational operation only changes the sign of the primary

mode, while keeping the signs of the two secondary distortions

GM4 and GM1. Thus, once the transformation ðP; pÞ relating

both structures is fixed, and maintaining the same polarization

vectors, the two alternative domains for this compound

correspond to the distortion amplitudes (AM2þM4, AGM4, AGM1)

and (�AM2þM4;AGM4;AGM1). These correspond to two

equivalent structures related by the operation of the Eucli-

dean normalizer of Pba2, ð1j1=2 1=2 0Þ, i.e. a mere origin shift.

Hence, contra-intuitively, the sense of the spontaneous

polarization is fixed and unique in the two domains that have

the same orientation for the Pba2 space group, despite the

system being an improper ferroelectric. The polarization can

indeed be switched by means of an electric field, but this

corresponds to the transformation into the domain related by

the coset representative ð4zj0 0 0Þ, and therefore also implies

a transformation of the polarization vector corresponding to

the primary distortion M2+M4 according to the action of the

point-group operation 4z, which is not reducible to a mere

change of sign, but produces a different relative orientation of

the Pba2 space group with respect to the tetragonal parent

structure. This means that the reversal of the spontaneous
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3 In some cases the action of the lost symmetry operation gi on a given irrep
distortion, even when fulfilling (13), cannot be reduced to a factor +1 and �1,
and the polarization vectors are distinguished by more complex rotational
relations.



polarization along the pseudo-tetragonal z axis through the

action of an electric field will be accompanied by the trans-

formation through the operation 4z of the non-polar M2+M4

atomic displacements described in Table 6, which are mostly

on the plane xy.

Below we will show further examples where two primary

distortion modes are active and the set of possible domains is

more varied.

8. Hexagonal perovskites ABX3

There are a considerable number of ABX3 compounds which

crystallize in the so-called hexagonal perovskite (2L) structure

or in slightly distorted modifications of it. A representative of

the parent hexagonal perovskite structure, with P63=mmc

symmetry, underlying these structures is CsNiCl3 (Minkiewicz

et al., 1970). For smaller A cations the structure is usually

distorted at room or lower temperatures, and polar config-

urations are rather common, producing ferroelectric phases

(Mitsui et al., 2000; Hendrikse & Maaskant, 1997; Yamanaka et

al., 2002). If the B cations are magnetic, magnetically ordered

phases also exist at low temperatures, and multiferroic prop-

erties combining ferroelectricity and magnetic ordering are

possible (Morishita et al., 2001). We will see here that it is

very illustrative and illuminating to analyze and compare the

structures of this family, performing a systematic mode

decomposition with respect to the ideal hexagonal perovskite

configuration.

We first consider a representative of the family, namely the

compound KNiCl3 (Visser et al., 1980). In the parent P63=mmc

phase Ni, K and O occupy positions 2a, 2d and 6h. It has a

ferroelectric phase at room temperature with space group

P63cm with a triplicated unit cell (aþ 2b, �2a� b, c; 0; 0; 0).

A mode analysis of this phase was done ‘by hand’ by Mañes et

al. (1982). We present here its mode decomposition as

obtained with AMPLIMODES, using the parameterization

discussed above. The graph of maximal subgroups and irreps

relating the symmetry of the ferroelectric phase with that of

the parent phase is shown in Fig. 8. One can see that there is a

primary active irrep with wavevector (1/3, 1/3, 0) and label K34

and two secondary active irreps associated with two inter-

mediate subgroups. The K1 distortion also corresponds to a

wavevector (1/3, 1/3, 0), so that it produces the same cell

multiplication, but maintains the point group of the parent

phase, while the second distortion, GM2� at the Brillouin-

zone center keeps the parent lattice and is the polar mode

responsible for the spontaneous polarization in the distorted

phase.

From Fig. 8 it can be deduced that the symmetry break from

the parent phase to the room-temperature structure could

take place by means of two quite different mechanisms. The

most obvious one would be a single phase transition with K3

acting as active primary irrep, and distortions GM2� and K1

appearing as secondary effects. But one could imagine a more

complex symmetry-breaking mechanism, with GM2� and K1

being primary unstable modes, and producing in general two

phase transitions, with an intermediate phase of symmetry

P63cm or P63=mmc, depending on which of the two distortions

first becomes zero as temperature is increased. This alter-

native mechanism has in fact been considered as a possibility

in the case of YMnO3, which has a similar symmetry relation

with its parent space group, although both parent and

distorted structures are quite different (Nénert et al., 2007;

Lonkai et al., 2004).

In the case of KNiCl3, as in YMnO3 (Fennie & Rabe, 2005;

Orobengoa et al., 2009), however, the mode decomposition in

terms of the three symmetry-breaking components K3, K1 and

GM2� of the structure of KNiCl3 leaves little room for

speculation. Their respective amplitudes (in Å) are listed in

Table 7. The much larger amplitude of the K3 anti-

ferrodistortive distortion is a clear indication that it can be

identified with the primary order parameter of this phase, and
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Table 7
Summary of the mode decomposition with respect to its P63=mmc parent
structure of the P63cm structure of KNiCl3 (Visser et al., 1980).

As reference a symmetrized idealized P63=mmc structure has been used (see
Table 8). (Total distortion: 1.72 Å.)

K-vector Irrep Direction
Isotropy
subgroup Dimension

Amplitude
(Å)

(0, 0, 0) GM1+ (a) P63=mmc 1 0.02
(0, 0, 0) GM2� (a) P63mc 3 0.22
(1/3, 1/3, 0) K1 (a, 0) P63=mcm 3 0.07
(1/3, 1/3, 0) K3 (a, 0) P63cm 2 1.70

Table 8
Reference structure for KNiCl3 corresponding to its parent hexagonal
P63=mmc phase in the P63cm setting of its distorted structure (a = 11.795,
b = 11.795, c = 5.926 Å).

Atom
Wyckoff
position x y z

Ni1 2a 0.000000 0.000000 0.000000
Ni1_2 4b 0.666667 0.333333 0.000000
K1 6c 0.333334 0.000000 0.750000
C1 6c 0.160000 0.000000 0.250000
C1_2 12d 0.826667 0.333333 0.250000

Figure 8
Graph of maximal subgroups relating the space groups of the parent and
distorted phases of KNiCl3. For each subgroup any irrep yielding this
symmetry is indicated.

4 In Mañes et al. (1982) the label used was K4. Here we maintain the labels
provided by AMPLIMODES in accordance with the convention of
ISOTROPY.



it can be further inferred that K1 and GM2� are induced

secondary effects. The material is then a ferroelectric of

improper character. Figs. 9 and 10 illustrate the polarization

vectors of the three types of distortions intervening with so

different amplitudes in the total observed distortion. The

primary K3 distortion involves displacements of the columns

of NiCl6 octahedra along the z axis, with the two internal

columns displacing in opposite direction to the one at the

origin. The magnitude of the displacement of the column at

the origin doubles that of the internal columns. This non-

crystallographic correlation introduced by the K3 symmetry is

patent in the polarization vector listed in Table 9. The Ni1 and

Ni1_2 atoms within the asymmetric unit of the distorted

structure move in opposite directions along z, with a 1/2

relation between their displacements. The same relation exists

among the displacements of the two Cl sites. But Table 9 shows

an additional correlation between the displacements of the Cl

and Ni sites, namely their displacements within each column

of NiCl6 octahedra are practically equal within experimental

resolution, so that the distortion mode involves global

displacements of the NiCl3 columns as rigid units. This

correlation of the primary K3 distortion is not forced either by

symmetry or by a strong rigidity of the Ni positions within the

octahedra. In fact, in the observed structure the Ni atoms

clearly displace relatively to their surrounding Cl6 octahedra

and approach along the z axis one of the two Cl3 triangles

forming the octahedron. But these Ni displacements are not

part of the K3 distortion; they follow a pattern according to

the GM2� symmetry, as shown in Fig. 9(b).

In the GM2� distortion all Ni atoms move in phase with the

same amplitude, while the Cl atoms displace also in phase with

similar amplitude but in opposite sense. The GM2� distortion

is completed with the displacements of the K atoms outside

the octahedral columns, which move in the same direction as

the Ni atoms. Hence we have a polar distortion with cations
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Table 9
Polarization vectors of the K3, K1 and GM2� distortions present in the
P63cm structure of KNiCl3.

The asymmetric unit is that of Table 8. Displacements are given in relative
units with respect to the reference unit cell (Table 8). Polarization vectors are
normalized to 1 Å.

K3 K1 GM2�

Atom �z �x �y �z

Ni1 �0.0482 0.0000 0.0000 �0.0311
Ni1_2 0.0241 0.0000 0.0000 �0.0311
K1 0.0000 0.0288 0.0000 �0.0437
Cl1 �0.0489 �0.0078 0.0000 0.0249
Cl1_2 0.0244 �0.0029 �0.0137 0.0249

Figure 10
Polarization vector of the distortion corresponding to the irrep K1 in
KNiCl3 , in a perspective view (a) and projected on the plane xy (b). The
scale of the displacement vectors has been enlarged. [Figure created using
FullProf Studio (Rodrı́guez-Carvajal, 1993).]

Figure 9
Polarization vector of the distortions corresponding to the irreps K3 (a)
and GM2� (b) in KNiCl3. The scale of the displacement vectors has been
enlarged. [Figure created using FullProf Studio (Rodrı́guez-Carvajal,
1993).]



and anions moving in opposite senses, and therefore suscep-

tible to producing a significant polarization, as observed

experimentally (Mitsui et al., 2000). The mode decomposition

also shows that the displacement off-center of the Ni atoms

within the NiCl6 octahedra is not part of the fundamental

distortion (normal mode) that is unstable. This means that

most probably these off-center shifts of the Ni atoms are not

intrinsically favorable in contrast with the pure K3 distortion.

It should be stressed that by definition a distortion mode

with a non-zero wavevector cannot induce any polarization,

and only polar modes at the Brillouin-zone center, such as

GM2�, can be considered at the origin of any spontaneous

polarization and can linearly couple with an external electric

field. This is rather often overlooked in the literature, and in

the present compound has led to speculations about possible

ferrielectric properties (Machida et al., 1994). From Fig. 9 one

can clearly see that the polar displacements of the GM2�

distortion are fully homogeneous. Ferrielectricity cannot

therefore be supported by the experimental structure, and the

confusion probably originates in the erroneous consideration

of the dominating K3 distortion pattern (with opposite

displacements of the octahedral columns) as the source of the

spontaneous polarization.

The secondary distortion K1, although quite small, seems to

be significant within experimental resolution. As shown in

Fig. 10 and Table 9, this distortion concerns displacements of

the Cl and K atoms on the xy plane. The Cl atoms in conse-

cutive Cl3 triangles along the octahedral NiCl3 columns rotate

in opposite senses around the z axis, while the displacements

of the K atoms between the columns move in a sense consis-

tent with the expected steric hindrances caused by the chlorine

displacements.

The faintness index (see x4) of the secondary distortion K1

is 2, while that of the polar mode GM2� is 3.5 Hence, the signs

of the amplitudes of the secondary distortions are bound to

those of the primary mode, according to the proportionality

laws,

AK1 / A2
K3;

AGM2� / A3
K3:

ð14Þ

This means that an equivalent structure or domain (see x7) will

be given by the following changes in the signs of the ampli-

tudes: (�AK3;AK1;�AGM2�). These domain sign relations are

very important for comparing the mode decomposition of

similar or closely related structures coming from different

sources or experiments. Table 10 compares the mode decom-

position of KNiCl3 with those of other ABX3 P63cm structures

considered isomorphic, namely TlFeBr3, RbMnBr3, BaMnO3

and TlCoCl3.6 The amplitudes of the three irrep distortions for

each compound are listed, and their polarization vectors are

compared through their scalar product with that of KNiCl3.

One can see that in the five compounds the distortion K3 is

predominant and has within experimental resolution the same

bidimensional polarization vector, which means that in all

cases the octahedral BX3 columns displace as rigid bodies,

including the B cations inside the BX6 octahedra. The polar

distortion GM2� has, however, clear differences. Although

the GM2� distortion in TlFeBr3 is essentially the same as in

KNiCl3 , the positive sign of their scalar product is inconsistent

with the change of sign observed in the primary distortion K3.

This means that in TlFeBr3 the polar displacements of the A

and B cations and X3 columns along z displayed in Fig. 9(b)

have opposite senses with respect to the sense taken by the

primary K3 distortion. In other words, an equivalent K3

distortion in both compounds would produce a spontaneous

polarization in opposite directions. This structure must then be

taken with caution. It may happen that indeed the anharmonic

couplings between similar K3 and GM2� distortions in the

two compounds have opposite signs, but another reason could

be that one of the two models corresponds to a local false

minimum in the refinement process. Indeed, false minima have

been reported in the least-square minimization of distorted

structures corresponding to changes of sign of some of the

irrep distortion modes present in the actual structure (Rae et

al., 1992).

The sign of the scalar products of the polarization vectors

of the GM2� distortions in the other three compounds is

consistent when compared with the scalar product of the K3
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Table 10
Comparison of the mode decomposition of the P63cm phase of different ABX3 compounds.

The third column indicates the dimension of each distortion subspace. For each compound the first row shows the amplitude of the irrep distortion, while the
second indicates the value of the scalar product of its polarization vector with that of the corresponding distortion in KNiCl3. For GM2�, the scalar product with
that of TlCoCl3 is also indicated in parentheses. The structural models have been taken from Visser et al. (1980) (KNiCl3), Jouini et al. (1982) (TlFeBr3), Fink &
Selfert (1982) (RbMnBr3), Cussen & Battle (2000) (BaMnO3 at 80 K) and Nishiwaki et al. (2006) (TlCoCl3).

Isotropy
subgroup Dimension KNiCl3 TlFeBr3 RbMnBr3 BaMnO3 TlCoCl3

GM2� P63mc 3 Amplitude 0.21 0.36 0.39 0.14 0.16
Product 1 (0.70) 0.98 (0.53) 0.77 (0.994) �0.74 (�0.997) 0.70 (1)

K1 P63=mcm 3 Amplitude 0.07 0.10 0.02 0.04 0.007
Product 1 0.70 0.67 �0.55 �0.89

K3 P63cm 2 Amplitude 1.70 1.15 1.72 0.42 1.02
Product 1 �0.9997 1.0000 �0.9999 0.9999

5 This can be derived using the program INVARIANTS from the package
ISOTROPY (Hatch & Stokes, 1985).

6 The Inorganic Crystal Structure Database (Bergerhoff & Brown, 1987)
contains a few additional cases with vanadium as B cation, and RbTiI3 from
Zandbergen (1981), but unfortunately in these models the z coordinate of two
atoms (instead of one) were a priori fixed in the refined model, and therefore
the structural models cannot be considered realistic.



mode. However, the three distortions differ significantly from

that of KNiCl3 , as its scalar product is only of the order of 0.7–

0.8. This difference can be further assessed by comparing the

atomic displacements associated with the distortion mode

in each case. Table 11 shows the polarization vector of the

GM2� distortion mode of TlCoCl3 . One can see that in

contrast with KNiCl3 the B cations displace along z in the

same sense as the chlorine atoms, and with almost the same

amplitude, so that in this case the octahedral BCl3 columns

essentially move as rigid units in the polar distortion. The very

small off-center shift of the B cations within the octahedra

is close to the experimental error and in fact in the opposite

direction to that observed in KNiCl3 . We can then expect

the spontaneous polarization to be much weaker than in

KNiCl3 .

The GM2� distortion in BaMnO3 and RbMnBr3 is very

similar to the one of TlCoCl3 . This can be seen in Table 10,

where the alternative scalar product with respect to the

polarization vector of this distortion in TlCoCl3 is also shown.

One can observe therefore that, despite the similarities among

the structures, a clear difference exists between the Ni and the

Mn/Co compounds with respect to the form of the secondary

polar distortion.

The very weak marginal K1 distortion has much larger

variations between the compounds. As its amplitude is much

smaller than the other two irrep distortions, its polarization

wavevector is expected to have a larger error. In some of the

compounds its amplitude is so small, as in TlCoCl3 , that it

could be considered negligible. For this compound, note that

although the polarization vector of the K1 distortion is rather

close to that of KNiCl3 (see Tables 9 and 11), with the

displacement of A cations and Cl anions being correlated in a

similar form (see Fig. 9), its sign is inconsistent with that in

KNiCl3 . In some of the other compounds the polarization

vector is quite different and the sense of the displacements of

the A cations relative to those of the X anions changes.

One can then summarize that the primary distortion mode

is quite robust and transportable from one material to

another, while the secondary distortions can vary consider-

ably. In some cases this could be due to false local minima in

the refinement process, while in other cases it can happen

because of genuine changes in the scheme of harmonic and

anharmonic couplings among the atomic displacements

between different compounds. In any case, secondary modes

have much smaller amplitudes and are bound to be more

poorly determined. A look at the structure decomposed into

modes can be very useful both to avoid the traps of false

refinement minima, and to compare structures, where the

differences appear mostly in changes of the secondary

distortions, which although quite weak can be fundamental for

the macroscopic properties of the material.

Some of the studies on these compounds have indicated

that the alternative symmetry P3c1, instead of P63cm, could

also be used to refine the experimental data of the distorted

structure with similar reliability factors. In some cases the

experimental data were not sufficient to distinguish between

the two models and only an arbitrary choice between the two

models could be made (Cussen & Battle, 2000; Nishiwaki et al.,

2006). In fact, as easily checked with SYMMODES (Capillas et

al., 2003) or ISOTROPY (Stokes & Hatch, 2002), this alter-

native symmetry for the distorted phase would also corre-

spond to a distortion K3 as primary mode, and K1 as

secondary. The difference with the P63cm symmetry break

would be associated with a change in the direction of the order

parameter K3 in its two-dimensional irrep space, i.e. a

different (orthogonal) linear combination of the two inde-

pendent modes of this symmetry. This would be sufficient to

change the symmetry to P3c1, and cancel the possibility of

having a secondary polar distortion. The fact that the structure

of this secondary polar distortion, only present under the

hexagonal symmetry, is quite comparable in all the compounds

(see Table 10) is a significant factor that should favor the

P63cm model as the most plausible one.

Another illustration of the insight that the mode decom-

position can provide is the comparison of the structure

of BaMnO3 at 80 K, which has its mode decomposition

summarized in Table 10, with the structure of the same

compound at 1.7 K, reported in the same work (Cussen &

Battle, 2000). The amplitudes (in Å) of the three irrep

distortions of K3, K1 and GM2� symmetries at the lower

temperature are 0.53, 0.15 and 0.14, respectively, to be

compared with 0.42, 0.04 and 0.14 for the structure at 80 K

(see Table 10). The distortion amplitudes have increased with

the temperature decrease as one would expect, but their

polarization vectors have some clear inconsistent variation.

Their scalar product with those at 80 K gives 0.9998,�0.90 and

0.996, respectively. Hence, the distortion K1 keeps its internal

structure similar to that at 80 K, but has its sign switched,

while the other two distortions are practically invariant except

for its amplitude increase. From the discussion above it should

be clear that the K1 distortion has its sign fixed by that of the

primary mode [see equation (14)], and a change of sign of this

irrep distortion without a change of sign of the K3 distortion

describes a structure quite different from that reported at

80 K. Therefore, we have here most probably another example

of a defective structural model caused by a false refinement

minimum with a secondary irrep distortion having a spurious

switch of sign. As the amplitude of the K1 mode is significantly

larger at 1.7 K, the incorrect sign of this distortion is most

probably the one at 80 K. This could also be inferred from
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Table 11
Polarization vectors of the K3, K1 and GM2� distortions present in the
P63cm structure of TlCoCl3 (Nishiwaki et al., 2006).

The asymmetric unit is equivalent to that of Table 8. Displacements are given
in relative units with respect to the experimental unit cell (a = 11.86, b = 11.86,
c = 5.98 Å). Polarization vectors are normalized to 1 Å.

K3 K1 GM2�

Atom �z �x �y �z

Co1 �0.0488 0.0000 0.0000 0.0164
Co1_2 0.0244 0.0000 0.0000 0.0164
Tl1 0.0000 �0.0186 0.0000 �0.0611
Cl1 �0.0481 0.0047 0.0000 0.0149
Cl1_2 0.0240 0.0093 0.0232 0.0149



Table 10, where the decomposition can be compared with that

of KNiCl3 .

Further consideration of the hexagonal ABX3 compounds

that exhibit a distorted structure of even lower symmetry is

required. KTiCl3, KTiBr3 and KTiI3 are reported to have a

distorted hexagonal 2H perovskite structure with space group

P63 . The three structures have been obtained from single-

crystal X-ray diffraction and reported in a recent publication

(Jongen et al., 2005). The reliability factors are, however,

rather poor, the weighted R factors being 0.10, 0.15 and 0.16

for KTiCl3 , KTiBr3 and KTiI3 , respectively. Clearly, the

structural model for KTiCl3 is much more reliable than for the

other two compounds. One can perform a mode decomposi-

tion of the three structures similar to that done for the P63cm

compounds. The transformation matrix relating the lattice and

origin of these P63 compounds with that of the hexagonal 2H

perovskite is the same as for the group P63cm. Hence the

space group of these compounds is a subgroup of P63cm

observed in the compounds discussed previously. Fig. 11 shows

a graph of maximal subgroups relating the parent and

distorted symmetries in this case. The number of irrep

distortions permitted by the P63cm symmetry is enlarged with

new irrep components associated with other intermediate

symmetries. The most important point evidenced by Fig. 11 is

the fact that there is no single irrep distortion that can produce

the symmetry break between the parent and the distorted

symmetry, i.e. the distortion present in these P63 phases must

have more than one primary distortion. From Fig. 11 it is clear

that at least two distortions corresponding to two different

irreps are necessary to explain the symmetry break. There

could be many pairs of irrep distortions which could be

responsible for the observed symmetry P63, but, assuming that

the irrep K3 is also a primary distortion in these compounds,

the second primary mode could only be either GM2+, K4 or

K2. The presence of any one of these three distortions toge-

ther with the K3 distortion would be sufficient for explaining

the observed P63 symmetry. The mode decomposition of these

three structures summarized in Table 12 permits the identifi-

cation of the distortion GM2+ as the second primary distor-

tion. It is clearly the dominant component of the distortion

that superposes to those yielding the P63cm symmetry. This

distortion is represented in Fig. 12. Its polarization vector is

fully determined by symmetry, as only one basis symmetry

mode is involved. It is a rotation of the octahedral BX3

columns around the z direction. As it is a primary distortion, a

switch of the sense of these rotations independently of the sign

of the other primary distortion K3 yields an equivalent

configuration. Fig. 11 shows that the secondary distortions K2

and K4 must be induced by the simultaneous presence of both

primary modes, as their isotropy subgroups are not super-

groups of any of the two primary symmetries P63cm or P63=m

but of their intersection P63 . Indeed, using the module

INVARIANTS from ISOTROPY (Stokes & Hatch, 2002) it

can be checked that the lowest coupling of the distortions of

symmetry K2 and K4 with the primary modes which are

responsible for their induction in the distorted phase are

AK3AGM2þAK2 and A2
K3AGM2þAK4, respectively. Both distor-

tions are therefore sensitive to the sign of the GM2+

distortion, while only K2 would also switch with a change of

sign of the K3 distortion.

The K3, K1 and GM2� distortions present in these three

P63 structures are compared in Table 12 with those of the

P63cm phase of KNiCl3 . In the case of KTiCl3 , the coinci-

dence of the polarization vectors of the three distortions is

striking, despite the quite different amplitudes. To be noted is
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Figure 11
Graph of maximal subgroups relating the space groups of the parent and
distorted P63 phase of KTiCl3. For each subgroup any irrep yielding this
symmetry is indicated. The two primary active irreps evidenced by the
mode decomposition are highlighted.

Table 12
Mode decomposition of the P63 phases of different ABX3 compounds compared with the mode decomposition of the P63cm phase of KNiCl3.

The third column indicates the direction of the irrep distortion in the irrep space. For each compound the first column shows the amplitude of each irrep distortion,
while the second indicates the value of the scalar product of its polarization vector with that of the corresponding distortion in KNiCl3 , if existing. For irrep
distortions only present in the P63 configuration, only their amplitudes are indicated. The structural models have been taken from Visser et al. (1980) for KNiCl3

and Jongen et al. (2005) for the rest.

K-vector Irrep Direction
Isotropy
subgroup Dimension KNiCl3

KTiCl3

wR ¼ 0:10
KTiBr3

wR ¼ 0:15
KTiI3

wR ¼ 0:16

(0, 0, 0) GM2� (a) P63mc 3 0.21 1 0.10 �0.9992 1.21 �0.63 0.81 0.65
(1/3, 1/3, 0) K1 (a, 0) P63=mcm 3 0.07 1 0.18 0.97 1.09 0.90 0.54 �0.91
(1/3, 1/3, 0) K3 (a, 0) P63cm 2 1.70 1 2.11 �1 3.73 0.9997 2.53 0.9999
(0, 0, 0) GM2+ (a) P63=m 1 0 0.74 1.49 2.04
(1/3, 1/3, 0) K2 (a, 0) P6322 1 0 0.01 0.18 0.02
(1/3, 1/3, 0) K4 (a, 0) P63=m 4 0 0.11 2.10 0.76



the correlated change of sign of the K3 and GM2� distortions,

corresponding to an equivalent domain-related configuration.

On the other hand, the mode decomposition of the other two

compounds, with much poorer reliability factors, suggests

where the problems of these structural models could be. While

the polarization vector of the primary mode K3, given by a

single parameter, is essentially the same as in KNiCl3 , the

secondary ones have much larger relative amplitudes than in

KTiCl3 and their three-dimensional polarization vectors have

erratic changes of sign, not even consistent between the two. If

KTiI3 and KTiBr3 are compared, their distortions GM2� and

K1 are very similar but their signs are switched, and do not

correspond to equivalent domain-related configurations.

These structures are probably also associated with false

refinement minima for structures with switched secondary

modes.

The mode decomposition of these P63 ABX3 structures also

helps to infer the probable temperature behavior of these

compounds. If, as usual, they acquire the parent symmetry

P63=mmc at high temperatures, one can expect the existence

of an intermediate P63cm phase after the second primary

mode GM2+ is thermalized. One cannot discard of course a

single first-order phase transition with both order parameters

becoming zero simultaneously, but in most cases two active

primary irrep distortions imply two successive symmetry

breaks.

9. Distorted pseudocubic perovskites: sequence of
phase transitions

There are many ABX3 structures having as parent structure

the cubic perovskite with space group Pm3m. Depending on

the so-called Goldsmidt or tolerance factor which quantifies

the misfit of the sizes of the three ions, different distorted

structures exist, and the cubic parent phase is often reached at

high temperatures after following some sequence of phase

transitions. For these simple structures with rather rigid BX6

octahedra a mode description is quite simple; many normal

modes are fully determined by symmetry and can be identified

with tilts or RUMs (Giddy et al., 1993; Hammonds et al., 1996)

of the framework of octahedra. A good deal of the static

distortions present in these compounds can in fact be

described as tilting schemes of the BX6 octahedra, and have

been rationalized from this viewpoint (Glazer, 1972; Wood-

ward, 1997a,b). The more general approach of a mode

description has also been considered (Howard & Stokes, 1998;

Darlington, 2002; Knight, 2009). It is not the aim of this section

to review such an extensive subject. We only want to present a

few cases within this family as further examples of the power

of a systematic mode decomposition.

Let us consider the very well studied case of SrZrO3, which

has at room temperature a distorted perovskite structure with

Pnma symmetry (Howard et al., 2000; Kennedy, Howard &

Chakoumakos, 1999, and references therein), which is typical

of many ABX3 compounds having an A cation too small to

stabilize the cubic configuration. In this compound the cubic

perovskite structure is only attained above 1340 K. The setting

of its orthorhombic Pnma space group is related to the

supergroup Pm3m corresponding to its parent structure by the

transformation (aþ c; 2b;�aþ c; 0; 0; 0). The distortion

mainly involves correlated tilting of the ZrO6 octahedra, i.e.

RUMs of the octahedral framework (see Fig. 13), with a

multiplication of the unit cell by a factor of four. This implies

the presence of a considerable number of distortion modes of

different symmetry compared with the examples above. On

the other hand, the number of free atomic coordinates is quite

limited. Fig. 14 shows the graph of maximal subgroups

connecting the two space groups and, if existing, the irrep

yielding these intermediate symmetries as isotropy subgroups.

It can be seen that distortions with symmetries given by irreps

corresponding to three different symmetry points at the

border of the cubic Brillouin zone will be present in the Pnma

structure, namely the points M (1/2, 1/2, 0), X (0, 1/2, 0) and R

(1/2, 1/2, 1/2). Furthermore, the graph shows that the Pnma

symmetry of this phase is not an isotropy subgroup of Pm3m,

i.e. this symmetry cannot be attained with a single primary

mode. At least two primary modes are necessary. In other

words, the Pnma phase cannot be generated by a single

mechanism or a single unstable mode of the cubic configura-

tion, but at least two different normal modes must be active. In

lead articles

576 J. M. Perez-Mato et al. � Mode crystallography Acta Cryst. (2010). A66, 558–590

Figure 12
Polarization vector of the primary distortion GM2+ present in the P63

structures of KTiCl3 , KTiBr3 and KTiI3. (a) Perspective view, (b)
projection on the plane xy. The scale of the displacement vectors has been
enlarged. [Figure created using FullProf Studio (Rodrı́guez-Carvajal,
1993).]



the language of Landau theory, the phase Pnma should be the

result of the condensation of two order parameters. These

order parameters are in general expected to be thermalized

and become zero at higher temperatures, but each one inde-

pendently, producing two phase transitions. Thus, one can

expect from this simple symmetry relation regarding the

parent and distorted space groups the probable presence of an

intermediate phase before the system reaches the cubic

perovskite.

From the graph in Fig. 14 one can establish the different

possible primary distortions that may be relevant. One has to

look for pairs of isotropy subgroups which have as intersection

the observed space group Pnma. There are many possibilities.

Any pair of the distortions indicated in the graph, except for

the pair of the two M modes or the pair of two R modes, would

be sufficient to explain the observed Pnma symmetry.

A mode decomposition of the experimental structure at

293 K (Howard et al., 2000) clearly shows which are the

primary distortions. Table 13 lists the amplitudes of all the

distortion modes, and one can clearly see that two distortion

amplitudes are much larger, namely those of the distortions

R4+ and M3+, the one for R4+ being significantly larger. A

scheme of the five distortion modes participating in the Pnma

structure can be seen in Fig. 15. Their polarization vectors are

listed in Table S1 of the supplementary material.7 The two

primary distortion modes are tilting modes of the octahedra

with a single basis mode involved, and therefore fully deter-

mined by symmetry. The secondary mode X5+, however,

involves both oxygen and Sr displacements, and despite

implying some distortion of the octahedra it has a significant

non-zero amplitude. The two remaining secondary distortion

modes are very weak. The M2+ is zero within experimental

resolution, while the R5+ distortion, although very small, is

present in the structure, and mainly involves displacements of

the Sr atoms along the orthorhombic z direction.

Distortion modes of symmetry R4+ and M3+ are therefore

the two dominant primary distortion modes underlying the

Pnma structure of SrZrO3. An analogous symmetry-mode

decomposition in other compounds shows that this in fact

happens in most of the distorted Pnma perovskites, with

the R4+ distortion often being the strongest (Knight, 2009). In

this simple case these primary modes are defined in one-

dimensional spaces and their polarization vectors are fully

determined by symmetry, corresponding to simple so-called tilt

systems of the octahedra (Glazer, 1972; Howard & Stokes,

1998). Only their amplitudes are variable, and for small values

these amplitudes are linearly related to the corresponding tilt

angle.

The identification of these tilt sytems as the two primary

modes, with a symmetry given by an irrep of the parent space

group Pm3m, is information directly obtained from the
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Figure 14
Graph of maximal subgroups relating the space groups of the parent and
the Pnma phase of SrZrO3. For each subgroup any irrep yielding this
symmetry is indicated. The subgroups corresponding to the two primary
distortions are highlighted.

Table 13
Summary of the mode decomposition with respect to its Pm3m parent
structure of the Pnma structure of SrZrO3 at 293 K (Howard et al., 2000),
NaTaO3 (Kennedy, Prodjosantoso & Howard, 1999) and LaMnO3 at
300 K (Rodrı́guez-Carvajal et al., 1998).

Isotropy
Amplitude (Å)

Irrep subgroup Dimension SrZrO3 NaTaO3 LaMnO3

R4+ Imma 1 1.19 0.97 1.19
R5+ Imma 2 0.07 0.03 0.09
X5+ Cmcm 2 0.34 0.23 0.56
M2+ P4=mbm 1 0.01 0.01 0.36
M3+ P4=mbm 1 0.79 0.78 0.90

Figure 13
Structure of the Pnma phase of SrZrO3 , showing the strong tilting of the
octahedra with respect to the parent perovskite.

7 These polarization vectors and the output of AMPLIMODES with the
detailed mode decomposition for all examples discussed in this article are
available from the IUCr electronic archives (Reference: SH5107). Services for
accessing these data are described at the back of the journal.



structure, which is very valuable for inferring possible transi-

tion sequences, and general trends in the whole family. In fact,

as pointed out in previous literature (Howard & Stokes, 1998),

the instability of the perovskite cubic configuration with

respect to RUMs of symmetry R4+ and M3+ underlies many

of the distorted phases with various symmetries. The R4+

RUM modes correspond for instance to the well known

(threefold degenerate) instability present in SrTiO3 which

competes with the ferroelectric one (Zhong & Vanderbilt,

1995, and references therein), and yields for this compound at

low temperatures a tetragonal phase with I4=mcm symmetry.8

Both irreps R4+ and M3+ are three-dimensional and the

distortion and symmetry that is realized in SrZrO3 corre-

sponds to specific directions within the space of each repre-

sentation indicated symbolically in Table 13. An extended

general explanation of the meaning of specific directions of a

distortion mode within the irrep space and their relations with

the isotropy subgroup can be found in Hatch & Stokes (1985)

and Howard & Stokes (1998). In the present case, changing

the direction within the irrep space means in general a change

of the axis around which the tilts of the octahedra take place,

with a consequent change of the resulting (isotropy) space

group. For instance, the possible symmetries for an R4+

distortion are given by the following isotropy subgroups,9

(a) I4=mcm, (aþ b;�aþ b; 2c; 0; 0; 0), (a, 0, 0),

(b) Imma, (aþ c; 2b;�aþ c; 0; 0; 0), (a, a, 0),

(c) R3c, (�aþ b;�bþ c; 2aþ 2bþ 2c; 0; 0; 0), (a, a, a),

(d) C2=m, (�2c; 2b; aþ c; 0; 1=2; 1=2), (a, b, 0),

(e) C2=c, (�aþ 2b� c;�aþ c; aþ c; 0; 1=2; 1=2), (a, a, b),

( f) P1, (bþ c; aþ c; aþ b; 0; 0; 0), (a, b, c).

The last item in each row indicates for each case the

direction of the distortion in the irrep space, in the notation

used by ISOTROPY (Stokes & Hatch, 2002).

For a given R4+ instability of the cubic perovskite, the

realization of one or other space group of the above list

depends on the anharmonic terms in the free-energy function

discussed in x4, which creates the anisotropy of the energy

map in the three-dimensional subspace defined by the R4+

unstable threefold degenerate distortion modes. Usually,

because of the smoothness of the energy map, the energy

minima will correspond to high-symmetry directions within

the map (Vanderbilt & Cohen, 2001). These free-energy

minima can change with temperature and a sequence of first-

order phase transitions then happens, with symmetry changes

between different isotropy subgroups of the same irrep. This is

observed for instance in CeAlO3, where only R4+ distortions

act as primary within its phase-transition sequence for

increasing temperature (Fu & Ijdo, 2006; Avdeev et al., 2007),

I4=mcm� Imma� R3c� Pm3m:

The phase transitions are associated with changes of direction

of the R4+ order parameter (distortion) according to the list

of isotropy subgroups above. This is fully analogous to the

consecutive discontinuous phase transitions taking place in

BaTiO3, owing to changes of the direction of its spontaneous

polarization, directly related to changes of direction of its

polar GM4� distortion within its three-dimensional irrep

space (see x3).

In the case of SrZrO3, the R4+ distortion corresponds to the

direction (a, a, 0) with symmetry Imma. It is namely a

combination of two equal tilts around the [1, 0, 0] and [0, 0, 1]

cubic perovskite axes, which is equivalent to a tilt around the

oblique direction [1, 0, 1], i.e. around the x direction of the

orthorhombic setting (see Fig. 15).

As the R4+ distortion is clearly much stronger than the M3+

distortion, one can infer that this latter will be thermalized at

lower temperatures leaving a phase with only R4+ as primary

distortion. If the direction of the R4+ distortion mode does

not change, one can predict a phase transition into a phase

with Imma as space group, which can in principle be contin-

uous. If temperature is further increased, subsequent transi-

tions corresponding to changes of direction of the primary

R4+ distortion mode may happen, until the cubic phase is

finally reached. Indeed, this is what happens in SrZrO3, with a

reported transition sequence (Kennedy, Howard & Chakou-

makos, 1999)

Pnma� Imma� I4=mcm� Pm3m:

Therefore, the relative weight of several primary distortion

modes in a distorted structure can give important clues

concerning its behavior at higher temperatures. We can
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Figure 15
Scheme of the polarization vectors of the five different irrep distortion
components present in the Pnma structure of SrZrO3. The figure shows
in each case the distorted structure for an arbitrary amplitude of the
distortion.

8 The irreps labels do not necessarily coincide with those used in other studies
(Darlington, 2002). Unfortunately, even keeping a fixed specific choice of
notation, the irrep label may change depending on the origin choice in the
parent structure. For instance, if the origin is chosen at the site of the Sr atom
instead of the Zr, the irrep label of the distortion R4+ would change to R5�.
9 They can be obtained with ISODISPLACE (Campbell et al., 2006) and they
are also listed in Howard & Stokes (1998).



crosscheck this by comparing the mode decomposition of

SrZrO3 with the analogous phase of NaTaO3 (Kennedy,

Prodjosantoso & Howard, 1999), also shown in Table 13. In

this compound the amplitude of the R4+ distortion is about

20% smaller, while the M3+ distortion is of the same order of

magnitude. Although the R4+ distortion is still the largest, its

amplitude is much closer to that of M3+. In this case the

transition sequence is quite different,

Pnma� Cmcm� P4=mbm� Pm3m:

The mode decomposition of these high-temperature phases is

shown in Table 14. It can be seen that the Cmcm phase is also

the result of the presence of the two distortion modes with

irrep symmetry R4+ and M3+, but the R4+ distortion has

changed its direction, so that now its isotropy subgroup is

I4=mcm. Its amplitude is now significantly smaller than that of

the M3+ distortion. One can then infer, as it is indeed the case,

that the subsequent phase P4=mbm must be caused only by

the presence of the M3+ distortion, with the R4+ distortion

thermalized at a lower temperature than the M3+ distortion,

the opposite of what happens in SrZrO3.

The M2+ distortion, which distorts the BX6 octahedra (see

Fig. 15 and Table 1 in the supplementary material), is practi-

cally negligible both in SrZrO3 and NaTaO3, but can have

important amplitudes in the Pnma phase of perovskites with

Jahn–Teller ions. The local symmetry of the octahedral

distortions associated with this mode corresponds to that

induced by the local Jahn–Teller effect (Carpenter & Howard,

2009a,b). Table 13 shows the mode decomposition of LaMnO3

(Rodrı́guez-Carvajal et al., 1998), where the presence of a

significant M2+ distortion is patent, in contrast with the

previous examples. Despite its compatibility with the

symmetry produced by the two primary dominant distortions

R4+ and M3+, the M2+ distortion in Jahn–Teller Pnma

perovskites act as a third primary mode instead of as a

secondary induced distortion. In fact, this additional primary

mode usually introduces a new phase transition corresponding

to its independent condensation. As the Pnma symmetry is

compatible with the distortion, this additional Jahn–Teller

transition would not represent any symmetry change in a

structure with both R4+ and M3+ already frozen, and an

isosymmetrical Pnma–Pnma transition takes place, with a

conspicuous increase of the amplitude of the M2+ distortion

acting as a non-symmetry-breaking order parameter. This is

what happens in LaMnO3 at 750 K (Rodrı́guez-Carvajal et al.,

1998).

10. Distorted structures as commensurate modulated
structures: mode decomposition versus superspace
description

The description of commensurately distorted structures in

terms of symmetry-adapted distortion modes is closely related

to the alternative approach of treating them as modulated

structures with the use of the superspace formalism (Perez-

Mato, 1991; Janssen et al., 2004). Displacive distortion modes

are in fact modulations with the wavevectors associated with

their corresponding irrep. Thus, in the previous example

of SrZrO3, three modulations with wavevectors (1/2, 1/2, 0),

(0, 0, 1/2) and (1/2, 1/2, 1/2) are present.

To describe a commensurately distorted structure as a

modulated phase a set of primary modulation wavevectors is

defined and the distortion is given by a superposition of

harmonics of this set of primary wavevectors. The symmetry is

given by a superspace group, which defines the correlations

and symmetry restrictions that the atomic displacements must

have for each of these harmonics. In the case of incommen-

surate structures the number of harmonics is unlimited, but in

practice a hierarchy exists among them and the first harmonics

are expected to be dominant, so that the expansion can be

truncated. In a commensurate case the number of possible

harmonics is finite, and a hierarchy between first and higher

harmonics also exists, so that in some cases the highest

harmonics can be neglected. Under these premises the

program JANA (Petricek et al., 2006), for instance, is adapted

to treat and refine, using the superspace formalism, any

commensurately distorted structure with up to three inde-

pendent primary modulation wavevectors.

In simple cases, a mode decomposition in terms of irrep

distortion modes and a decomposition with modulation

harmonics under a postulated superspace group are fully

equivalent, i.e. each irrep distortion corresponds to a specific

harmonic in the modulation, and the secondary modes can in

general be identified with higher-order harmonics in the

superspace description. This happens when the average space

group in the superspace group is that of the parent structure

and a single primary wavevector exists, so that the modulation

is one-dimensional. In more complex cases the two methods

may differ in the way they decompose the global distortion. In

general, if the unit cell of the distorted phase is much larger

than the parent one, a mode decomposition would not bring

much benefit to what is already provided by the superspace

approach, and would be somehow less efficient, since the

structure of the polarization vectors can be trivially derived

from the modulation wavevector. On the other hand, for

supercells in the distorted phase, which are only a small

multiple of the parent phase, and involve modulations along

several directions, the mode approach is usually more

convenient. We illustrate these considerations with some
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Table 14
Summary of the mode decomposition of the Cmcm and P4=mbm phases
of NaTaO3.

Irrep
Isotropy
subgroup Dimension Amplitude (Å)

Phase Cmcm
R4+ I4=mcm 1 0.49
R5+ I4=mmm 2 0.04
X5+ Pmma 2 0.12
M3+ P4=mbm 1 0.54
M4+ P4=mmm 1 0.01

Phase P4=mbm
M3+ P4=mbm 1 0.38



examples. Further discussion on this matter can also be found

by Perez-Mato et al. (2010).

Let us consider first the simple case of the triclinic structure

of NbS3 . van Smaalen (1988) showed that the triclinic struc-

ture of this compound with space group P1 could be described

and refined as a modulated structure with modulation wave-

vector (0, 1/2, 0), with respect to a basic monoclinic structure

having space group P21=m and a unit cell with half the volume.

The structure could be refined satisfactorily introducing a

single harmonic in the modulation, which implied using a

smaller number of parameters than a conventional refinement

in the triclinic space group P1. The reason for this can be

clearly seen in the mode decomposition of the experimental

structure (Rijnsdorp & Jellinek, 1978), which is summarized in

Table 15. The decomposition has been performed with respect

to a virtual parent P21=m structure symmetrizing the experi-

mental one, such that the GM1+ distortion has been mini-

mized to zero. One can see that the symmetry-breaking

distortion has two components: a strong distortion Z1 with

wavevector q = (0, 1/2, 0) yielding the observed symmetry, and

a much weaker secondary distortion GM2+ at the Brillouin-

zone center, with an amplitude more than one order of

magnitude smaller. This secondary mode also breaks the

binary symmetry, but maintains the lattice of the parent phase.

Its weakness is another example of the hierarchy among

distinct irrep distortions in distorted structures. In the super-

space description this secondary distortion corresponds to a

second harmonic with wavevector 2q, which for this

commensurate case is formally equivalent to (0, 0, 0), but that

the superspace description treats separately (Perez-Mato,

1991). Hence, a superspace refinement of the structure

considering only sinusoidal modulations, as performed by van

Smaalen (1988), is fully equivalent to a refinement within a

model with only the primary distortion Z1, with the distortion

GM2+ being forced to have zero amplitude.

Let us consider now a more complex case in the much-

studied ferroelectric phase of K2SeO4. This structure has been

both analyzed as a modulated phase (Parisi & Bonadeo, 1997)

and in terms of irrep distortion modes (Perez-Mato et al.,

1986). It is a commensurate Pna21 structure, with a triplication

of a parent Pnma unit cell, which is the consequence of the

lock-in of the modulation wavevector q = �a� of a previous

incommensurate phase into the value � = 1/3. It is then natural

to describe this structure as a one-dimensional modulated

phase with the same superspace group as the incommensurate

phase, but with a commensurate wavevector, as done by Parisi

& Bonadeo (1997).

We can, however, also apply the mode decomposition

explained above. To use AMPLIMODES we only need to

introduce the Pnma (parent) and Pna21 structures, and the

transformation relating both groups: (�3a; c; b; 0; 0; 0). The

results are summarized in Table 16. As expected, we have a

dominant component for the irrep SM2, with wavevector

(1/3, 0, 0).10 This prevailing SM2 distortion is the primary

unstable mode that comes from the incommensurate phase

through the lock-in of the wavevector. This primary distortion

corresponds to the first harmonic of the modulation in the

incommensurate phase and determines the superspace-group

symmetry governing the symmetry properties of all additional

harmonics (Perez-Mato et al., 1984). There is also a weaker

distortion with the same wavevector but different irrep,

namely SM3. This secondary distortion can be identified with

the second harmonic in a modulated description. For a

wavevector q = (1/3, 0, 0), the second harmonic distortion has

the same wavevector as the first harmonic, but in the super-

space approach, as in the previous example, it can be treated

as a distinguishable second harmonic of the modulation

functions if we use the superspace group of the preceding

incommensurate phase. The symmetry properties of the

atomic displacements described by the irrep SM3 are then

equivalent to those introduced on the second harmonic

modulation by this superspace group. Similarly, the additional

GM4� distortion is the polar distortion responsible for the

spontaneous polarization and ferroelectric properties in this

commensurate phase, and can be identified with a third

harmonic in the atomic modulations (Perez-Mato et al., 1986;

Aramburu et al., 2006). In this example, it is noticeable that the

two allowed secondary distortions have smaller but significant

amplitudes, so that a satisfactory direct refinement of the

structure using either modes or superspace modulation func-

tions requires the same number of positional parameters as a

conventional refinement.

As a third example we take the mode decomposition of the

ninefold commensurately modulated phase of thiourea

[SC(NH2)2]. This structure is an intermediate lock-in phase

sandwiched within the extensive range of an incommensurate

phase (Moudden et al., 1979). The parent non-modulated

structure has Pnma symmetry, and the modulation wavevector

is q = 1=9b�, with therefore a ninefold multiplication of the

unit cell. The structure has been refined both as an incom-

mensurately modulated structure using the superspace
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Table 15
Summary of the mode decomposition of the P1 phase of NbS3 (Rijnsdorp
& Jellinek, 1978).

K-vector Irrep Direction
Isotropy
subgroup Dimension

Amplitude
(Å)

(0, 0, 0) GM1+ (a) P21=m 8 0.000 (5)
(0, 0, 0) GM2+ (a) P1 4 0.036 (3)
(0, 1/2, 0) Z1 (0, a) P1 12 0.520 (4)

Table 16
Summary of the mode decomposition of the threefold lock-in phase of
K2SeO4 (Yamada et al., 1984).

K-vector Irrep Direction
Isotropy
subgroup Dimension

Amplitude
(Å)

(0, 0, 0) GM1+ (a) Pnma 13 0.12
(0, 0, 0) GM4� (a) Pna21 8 0.55
(1/3, 0, 0) SM2 (a, 0) Pna21 16 1.16
(1/3, 0, 0) SM3 (a, 0) Pnma 26 0.39

10 It is important to stress that, even keeping a fixed standard for the labeling
of the irreps, the irrep labels may change for different equivalent choices of the
irrep wavevector. One should also take into account the dependence of the
irrep label on the setting chosen for describing the parent structure.



approach (Zuñiga et al., 1989) and as a conventional super-

structure (Tanisaki et al., 1988). The two models were shown to

be approximately equivalent (Perez-Mato, 1991) (see below).

Table 17 illustrates the features of the structure refined as a

conventional superstructure when decomposed in irrep

distortions (the H-atom positions have not been included). A

distortion with symmetry given by the irrep DT4 with a

wavevector on the line DT (0, �, 0) of the Brillouin zone with

� = 1/9 is dominant. The amplitudes of the additional distor-

tions are between 10 and 20 times smaller so that it can be

clearly identified as the primary mode. Note that the four irrep

distortions have as isotropy subgroup the observed space

group, and therefore from symmetry arguments any of them

could be the primary distortion. In this case the primary

character of the distortion with q = 1=9b� can only be derived

from the comparison of the amplitudes of the different irrep

distortions. Also, in contrast with K2SeO4, all irrep distortions

have in this example different wavevectors corresponding to

distinct harmonics of the primary one. Depending on the

parity of the irrep wavevector, the small representation asso-

ciated with the irrep distortion changes from DT4 to DT1. It is

noticeable that the secondary third-order harmonic with

wavevector 3q = (0, 1/3, 0), of the same symmetry as the

primary distortion, has a larger amplitude than the second

one, with a different symmetry. This third harmonic is

responsible for the soliton-like form of the atomic modula-

tions in the superspace description (Zuñiga et al., 1989). The

modulated refinement in this reference was carried out using

only harmonics up to third order for describing the atomic

modulations. This means neglecting a possible fourth-order

harmonic, which in the mode decomposition corresponds to

the weaker DT1 distortion with wavevector 4q = (0, 4/9, 0).

Table 17 shows that in the model refined as a conventional

superstructure the amplitude of this distortion, although very

small, is larger than its standard deviation. This difference is at

the origin of the small differences between the atomic posi-

tions of the two models, shown by Perez-Mato (1991).

It is interesting to compare in this last example the

description of each harmonic modulation obtained by the

two approaches. Table 18 shows the polarization vector of

the primary DT4 distortion in the mode description. The

description of the distortion mode is quite redundant. The

three cations S, C and N have a single independent site in the

parent unit cell and are split into five, five and nine indepen-

dent sites, respectively, in the ninefold structure. To describe

the distortion mode it is necessary to give the mode displa-

cements for all atoms in the large asymmetric unit of the

distorted phase with 19 atoms. In these 19 atomic displace-

ments the trivial correlations between consecutive parent unit

cells along the modulation direction coming from the sinu-

soidal form of the mode/modulation are inextricably entan-

gled with the non-trivial ones coming from the DT4 character

of the corresponding irrep. In contrast, the definition of the

first harmonic modulation in the superspace approach only

requires giving explicitly the three amplitudes that determine

the first harmonic of the modulation function for the three

independent atoms in the asymmetric unit of the parent phase

(Zuñiga et al., 1989). The sinusoidal function so defined,

together with the modulation wavevector, is sufficient to

describe the displacements of the equivalent atoms in the nine
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Table 18
Reference structure and polarization vector of the (0, 1/9, 0) DT4
distortion in the ninefold Pnma phase of thiourea according to the
structure reported as model 1 of Tanisaki et al. (1988) (H atoms not
included) (a = 7.545, b = 76.867, c = 5.467 Å).

Reference structure

Atom x y z

S1 0.9924 0.0278 0.1147
S1_2 0.0076 0.0833 0.8853
S1_3 0.9924 0.1389 0.1147
S1_4 0.9924 0.2500 0.1147
S1_5 0.9924 0.6944 0.1147
C1 0.0881 0.0278 0.8323
C1_2 0.9119 0.0833 0.1677
C1_3 0.0881 0.1389 0.8323
C1_4 0.0881 0.2500 0.8323
C1_5 0.0881 0.6944 0.8323
N1 0.1275 0.0425 0.7202
N1_2 0.8725 0.0981 0.2798
N1_3 0.6275 0.0130 0.7798
N1_4 0.1275 0.1536 0.7202
N1_5 0.1275 0.2648 0.7202
N1_6 0.1275 0.3758 0.7202
N1_7 0.1275 0.7092 0.7202
N1_8 0.1275 0.8203 0.7202
N1_9 0.1275 0.9314 0.7202

Polarization vector

Atom �x �y �z

S1 �0.0034 0.0000 �0.0012
S1_2 �0.0098 0.0000 �0.0035
S1_3 �0.0150 0.0000 �0.0054
S1_4 �0.0196 0.0000 �0.0070
S1_5 0.0184 0.0000 0.0066
C1 �0.0012 0.0001 �0.0026
C1_2 �0.0035 �0.0001 �0.0075
C1_3 �0.0054 0.0001 �0.0114
C1_4 �0.0071 0.0000 �0.0149
C1_5 0.0066 0.0000 0.0140
N1 �0.0005 0.0002 �0.0047
N1_2 �0.0010 �0.0002 �0.0107
N1_3 0.0000 0.0002 0.0020
N1_4 �0.0013 0.0001 �0.0155
N1_5 �0.0015 0.0000 �0.0191
N1_6 �0.0010 �0.0001 �0.0138
N1_7 0.0015 �0.0001 0.0184
N1_8 0.0013 0.0001 0.0175
N1_9 0.0005 0.0002 0.0084

Table 17
Summary of the mode decomposition of the ninefold phase of thiourea
according to the structure reported as model 1 in Tanisaki et al. (1988) (H
atoms not included).

K-vector Irrep Direction
Isotropy
subgroup Dimension

Amplitude
(Å)

(0, 0, 0) GM1+ (a) Pnma 7 0.08 (1)
(0, 1/9, 0) DT4 (a, �5.671a) Pnma 12 1.89 (1)
(0, 2/9, 0) DT1 (a, 0.364a) Pnma 12 0.13 (1)
(0, 1/3, 0) DT4 (a, �1.732a) Pnma 12 0.19 (2)
(0, 4/9, 0) DT1 (a, 0.839a) Pnma 12 0.09 (2)



consecutive parent unit cells forming the superstructure unit

cell, while the correlation according to irrep DT4 with those

atoms that are symmetry related by rotational operations

in the parent phase is automatically introduced by the

superspace-group operations (Janssen et al., 2004; Perez-Mato

et al., 1987).

As a final example we consider phase GaII of the element

Ga under pressure, which to our knowledge is the most

extreme case achieved in parameter reduction when

describing a superstructure as a modulated structure within

the superspace formalism. This phase of symmetry C2221

(Degtyareva et al., 2004), stable between 2 and 10 GPa, has a

very large unit cell with 14 symmetry-independent Ga atoms,

but it has been shown to be a simple commensurately modu-

lated structure of an Fddd structure with only a single

symmetry-independent atom at the Wyckoff position 8a

(1/8, 1/8, 1/8) (Perez-Mato et al., 2006). The superspace group

describing the symmetry properties of the modulation was

found to be Fdddð0 0 	Þ 0s0, with 	 = 9/13. Hence the modu-

lation wavevector was chosen as (0 0 9/13) and the conven-

tional unit cell is multiplied by 13, with respect to the virtual

Fddd parent structure. Within the superspace approach the

number of possible harmonics for the single atomic modula-

tion required to define the full structure is 25. But the struc-

ture could be satisfactorily described with only three

harmonics, which meant a reduction from 38 to four positional

parameters, when passing from a conventional crystal-

lographic description to a modulated one. The transformation

relating the setting of the Fddd parent structure with the

experimental one (Degtyareva et al., 2004) can be chosen as

(a; b; 13c;�1=8; 1=8;�3=8). The maximum atomic displace-

ment in the distortion relating both structures is of the order

of 0.8 Å and its mode decomposition is summarized in Table

19. The number of possible irrep distortions is 25, in accor-

dance with the number of allowed harmonics in the super-

space description, but the irreps involved have only 13

possible wavevectors of type ðn=13Þc�, with two different

possible small irreps for each of them except for n = 13, which

corresponds to the special point Z at the Brillouin-zone

border and only one irrep is compatible. The irrep distortions

with n odd all have as isotropy subgroup the observed

symmetry and are from this viewpoint possible primary modes,

while the even modes are all secondary, with higher isotropy

subgroups. The amplitudes obtained for the 25 symmetry

components in the distortion shows the dominant role played

by the LD3 distortion with wavevector q = ð9=13Þc�, in

accordance with the superspace description. This LD3(9/13)

distortion is clearly the primary distortion, being more than

one order of magnitude larger than the rest of the

components, except for two additional irrep distortions, which

can be identified with a second and a third harmonic. Indeed,

the LD4[1/13] distortion with a considerable amplitude

has a wavevector equivalent to 3q, while LD2[8/13] can be

identified with a second harmonic with wavevector 2q

equivalent to �ð8=13Þc�. These three irrep distortions corre-

spond therefore to the three first harmonics, which were

considered sufficient by Perez-Mato et al. (2006) to describe

the structure.

In general, for each wavevector ðn=13Þc� two irrep distor-

tions exist with symmetries LD3 and LD4 for odd terms and

LD1 and LD2 for even terms, except for the case n = 13, with a

single irrep Z2. Each of these irrep distortions corresponds to

one of the harmonics used in the superspace description. A

modulation harmonic of order m (m = 2; . . . ; 25) in the

superspace description is in fact a distortion with wavevector

qm = ð9m=13Þc� which can be changed to an equivalent

wavevector qn = ðn=13Þc� ðn = 1; . . . ; 13) through a reciprocal-

lattice translation 2pc� (p integer): qn = qm + 2pc�or �qm +

2pc�. This change implies also changing the small irrep asso-

ciated with the wavevector, depending on the parity of p, so

that for n odd it changes from LD3 (p even) to LD4 (p odd),

while for n even the change is from LD1 (p even) to LD2 (p

odd). This property can be derived from the form of the irreps,

and their labeling through a wavevector representative and a

small irrep that depends on the chosen wavevector (Cracknell

et al., 1979). Thus, for instance the LD3[1/13] distortion can be

considered a 23rd harmonic, its wavevector being q23 =

23ð9=13Þc� = �ð1=13Þc� + 8ð2c�Þ with p even, while LD4[1/13]

corresponds to the third-order harmonic with q3 = 3ð9=13Þc� =

ð1=13Þc� + 2c�, and p odd. Following these rules the corre-

spondence between the 25 harmonics of the superspace

description and the 25 irrep components of the mode

decomposition can be made. This is given in the first column of

Table 19. The equivalence between the two approaches can be

clearly seen, and also that the superspace approach can deal
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Table 19
Summary of the mode decomposition of the GaII phase with space group
C2221 and 38 atomic positional parameters (Degtyareva et al., 2004) with
respect to an Fddd structure with a single independent atom at position
8a (1=8; 1=8; 1=8).

The first three harmonics dominating the distortion can be identified.

Order
harmonic K-vector Irrep

Isotropy
subgroup Dimension

Amplitude
(Å)

23 (0, 0, 1/13) LD3 C2221 2 0.11
3 (0, 0, 1/13) LD4 C2221 2 2.14
6 (0, 0, 2/13) LD1 F222 1 0.03

20 (0, 0, 2/13) LD2 Fddd 1 0.03
17 (0, 0, 3/13) LD3 C2221 2 0.06

9 (0, 0, 3/13) LD4 C2221 2 0.05
12 (0, 0, 4/13) LD1 Fddd 1 0.00
14 (0, 0, 4/13) LD2 F222 1 0.03
11 (0, 0, 5/13) LD3 C2221 2 0.05
15 (0, 0, 5/13) LD4 C2221 2 0.11
18 (0, 0, 6/13) LD1 F222 1 0.06

8 (0, 0, 6/13) LD2 Fddd 1 0.01
5 (0, 0, 7/13) LD3 C2221 2 0.16

21 (0, 0, 7/13) LD4 C2221 2 0.11
24 (0, 0, 8/13) LD1 Fddd 1 0.03

2 (0, 0, 8/13) LD2 F222 1 0.53
1 (0, 0, 9/13) LD3 C2221 2 3.59

25 (0, 0, 9/13) LD4 C2221 2 0.05
22 (0, 0, 10/13) LD1 F222 1 0.02

4 (0, 0, 10/13) LD2 Fddd 1 0.00
7 (0, 0, 11/13) LD3 C2221 2 0.12

19 (0, 0, 11/13) LD4 C2221 2 0.05
16 (0, 0, 12/13) LD1 Fddd 1 0.04
10 (0, 0, 12/13) LD2 F222 1 0.01
13 (0, 0, 1) Z2 C2221 2 0.07



with the symmetry constraints present in each harmonic in a

more efficient way.

The choice of the superspace group implies a decision about

which of the 25 irrep distortions is the primary modulation.

Once a superspace group is assumed, the superspace

symmetry automatically introduces the symmetry properties

of each harmonic, and a rough hierarchy in their importance is

implicitly assumed. The mode decomposition, on the other

hand, does not assume a priori any predominance among the

25 irrep components, and one has to define and indicate

explicitly one by one the symmetry properties of each possible

irrep distortion present in the structure. Only the actual mode

decomposition and the values of the distortion amplitudes for

a given structure will allow one to identify whether a primary

prevailing distortion exists. Even if a primary distortion has

been a priori identified from experimental results, the identi-

fication of the secondary modes of lowest order among all

possible irrep distortions, susceptible of having more weight in

the total distortion, require non-trivial considerations about

the relation between irrep labeling and wavevector choice, as

shown above.

Although the structure of GaII, as stressed by Perez-Mato

et al. (2006), is clearly very well described by the three first

modulation harmonics, indicated in Table 19, there are some

additional distortion amplitudes which seem to be significant

(being clearly larger than their standard deviations). It is

remarkable that even for these smaller components the

underlying hierarchy for odd harmonics coming from the

primary mode is observed, a fact that supports the consistency

of these smaller components of the reported structural model.

Thus, as shown in Table 19, the next two irrep distortions with

the largest amplitudes of 0.16 and 0.12 Å can be identified

with the fifth and seventh modulation harmonic. On the other

hand, the secondary modes with n even, except the second

harmonic, have amplitudes that can be taken as zero,

considering their standard deviation.

Summarizing, one can say that the use of symmetry modes

in the description of distorted structures is quite similar to the

application of superspace symmetry. Both approaches allow

in commensurate distorted structures a division of the

configuration space into symmetry-adapted subspaces, which

have usually very different weights in the total distortion.

However, the superspace symmetry of a commensurate

structure is not unique, and in this case the choice of the

superspace group is equivalent to a choice (among the

possible ones) of the irrep mode(s) that have a primary role

and prevail in the distortion. In contrast, a parameterization of

the structure in terms of symmetry modes does not require

introducing a priori such hierarchy among the irrep compo-

nents. On the other hand, the superspace formalism introduces

a much more efficient and economical form of describing the

irrep distortions, if these are modulations with long wave-

lengths compared with the size of the parent unit cell.

Reversely, for superstructures with a small cell multiplication,

including cases with several independent wavevectors, the

symmetry-mode decomposition is more efficient and simpler

than the superspace method.

The choice of the most adequate superspace group for a

commensurate structure can in some cases be problematic or

ambiguous. In these cases the symmetry-mode approach can

help to make the right choice of the superspace group by

identifying one or several primary active irreps. It is in general

possible to derive the resulting possible superspace groups

from an active irrep (Perez-Mato et al., 1984; Stokes et al.,

2007).

11. Mode analysis in ab initio calculations: a natural
basis of symmetry modes

11.1. Constraining the configuration space

Quantum ab initio calculations within the formalism of the

DFT are becoming rather common tools for explaining the

stability of distorted phases and for predicting their structures

(Rabe et al., 2007; Yin & Cohen, 1982; Milman et al., 2000).

These calculations permit one in general to determine within a

good approximation the energy and atomic forces for any

crystalline configuration. By this means, structures can be

relaxed in the computer and a prediction for the ground state

of the system can be obtained. Despite complex extensions

and improvements of this basic relaxation process (Oganov &

Glass, 2006), these ab initio calculations are limited by the fact

that the configuration space being explored must always be

constrained to a small subspace. The choice of this restricted

subspace is a rather empirical matter, despite the vocation of

these calculations being independent of experimental know-

ledge.

Another limitation is the fact that these methods only

calculate properties at 0 K, and therefore are only valid for

determining the ground-state configuration and not phases

that are stabilized by thermal effects. Some thermal effects can

be calculated with more computer-costly ab initio molecular

dynamics (Car & Parrinello, 1985), or with Monte Carlo

calculations introducing further approximations as effective

Hamiltonians (Zhong et al., 1995). But, also within these

techniques, the empirical constraint on the explored config-

uration space plays a fundamental role and can be critical in

obtaining correct predictions.

The reduction of the explored configuration space is often

carried out by considering a limited set of possible space

groups (subgroups of the parent space group). From what has

been shown in the sections above, it is clear that symmetry-

mode analysis can be a tool of extraordinary efficiency for

identifying the relevant symmetries that are worth exploring.

The distorted perovskites discussed above are a clear example.

Most of these phases are caused by one or several symmetry

modes, which tend to be systematically unstable for many

compositions. Distortions corresponding to the irreps R4+,

M3+ and GM4� can be found acting as primary irrep

distortions in many of these phases, yielding quite a various

but limited set of space-group symmetries. These possible

space groups depend on the direction taken by each distortion

mode within its irrep space, and the actual combination of the

three irreps realized in each case.
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Let us consider, for instance, the case of multiferroic

BiFeO3. Despite the intensive research on this material, its

thermal phase diagram is still under discussion. Its room-

temperature phase has R3c symmetry, and can be decomposed

into R4+ and GM4� contributions. If we are interested in

determining other phases of the phase diagram, it is then

reasonable to expect that these phases correspond to other

possible combinations of R4+ and GM4� distortions, or are

due to only one of these two irrep distortions. Using freely

available tools such as ISODISPLACE (Campbell et al.,

2006), one can find automatically all possible space groups that

can result from the action of these two irreps as primary

distortions, acting together or in isolation. These symmetries

are shown in Table 20 and are the obvious candidates for any

intermediate or competing phase. Furthermore, if we are

trying to characterize an intermediate paraelectric phase

realized before a full symmetrization into the parent cubic

symmetry (the so-called � phase), then the obvious symmetry

choices are the isotropy subgroups corresponding to a single

R4+ distortion, also listed Table 20. Six different space groups

are then possible. Only a couple of these symmetries have

appeared in the considerations of some of the published

ab initio or experimental studies of BiFeO3 (Haumont et al.,

2008; Kornev & Bellaiche, 2009; Kornev et al., 2007) and the

symmetry of this intermediate phase is still a matter of

discussion (Catalan & Scott, 2009; Selbach et al., 2008).

Unfortunately, a systematic exploration, either experimentally

or with ab initio techniques consistent with the mode analysis,

taking into account these six possibilities, has not been made.

Some recent work has reported that this � phase of BiFeO3

has Pbnm symmetry (conventional Pnma) (Arnold et al.,

2009). As can be seen in Table 20, this symmetry cannot be

explained by the action of a R4+ distortion or the combination

of R4+ and GM4�. This phase would be the Pnma config-

uration, typical of many perovskites, that was discussed in x9.

As shown there, it requires, besides a R4+ distortion, an M3+

distortion as primary agent of the symmetry break. This Pnma

phase would then imply that not only the polar distortion

GM4� disappears at the ferroelectric–paraelectric transition

but also an additional M3+ distortion simultaneously

condenses. This is in principle possible, as the transition is

strongly first order. But a full validation of the model, given

the uncertainties of powder diffraction analysis of pseudo-

symmetric structures, would require exploring and checking

first the simpler scenarios represented by the action of only a

R4+ distortion, whose possible space groups are listed in

Table 20. The need for defining a limited set of possible

reasonable alternative symmetry scenarios is even more

peremptory if we would pretend to predict or determine these

phases by ab initio methods. As seen in this example, the

analysis of the known structures in terms of irrep distortions

can be a most valuable tool for this task.

11.2. Comparison of ab initio structures with experimental
ones

Ab initio calculations are frequently used to determine/

predict the structure corresponding to the ground state of the

studied compound. As stressed above, the calculation is in

general limited by the assumed symmetry of this state. Some

good approximations to the structures of thermally stabilized

phases can also be obtained by restricting the minimization of

the energy within a postulated or an experimentally known

space-group symmetry. The comparison of these theoretical

structural models with experimental ones is usually made at a

qualitative level, comparing one-to-one the atomic positions.

We have seen in the previous sections that the decomposition

in terms of symmetry modes provides a robust framework for

making quantitative comparisons of experimental structures

having equal or different symmetry. As shown in x8, the

separation in a given structural distortion of the irrep distor-

tion amplitudes and the corresponding normalized polariza-

tion vectors, together with the distinction between primary

and secondary irrep distortions, permits quantitative

comparisons of different structural models with deeper

insight, separating marginal from fundamental structural

features. This is also valid for the comparison of ab initio

calculated relaxed structures with experimental ones. The

athermal character of the ab initio calculations is bound to

yield distortion amplitudes in general larger than those

observed in experiment, while the polarization vectors of the
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Table 20
Isotropy subgroups of Pm3m corresponding to the presence of distortions
of symmetry GM4� and R4+, as obtained using ISOTROPY (Stokes &
Hatch, 2002), relevant for considering possible symmetries of phases of
BiFeO3.

The first two columns show the special direction (one of a set of equivalent
ones) within the irrep space corresponding to the listed subgroup. The
conventional unit cell and the origin shift of the subgroup is indicated in
parentheses for each subgroup. First the possible symmetries when only one of
the two irrep distortions are listed. Then the possible subgroups for distortions
including the two irreps are shown.

Distortion
GM4�

Distortion
R4+ Subgroup

(a, 0, 0) – P4mm (b, c, a; 0, 0, 0)
(a, a, 0) – Amm2 (c, a � b, a + b; 0, 0, 0)
(a, a, a) – R3m (a � b, b � c, a + b + c; 0, 0, 0)
(a, b, 0) – Pm (b, c, a; 0, 0, 0)
(a, a, b) – Cm (a + b, b � a, c; 0, 0, 0)
(a, b, c) – P1 (a, b, c; 0, 0, 0)
– (a, 0, 0) I4=mcm (a + b, b � a, 2c; 0, 0, 0)
– (a, a, 0) Imma (a + c, 2b, c � a; 0, 0, 0)
– (a, a, a) R3c (b � a, c � b, 2a + 2b + 2c; 0, 0, 0)
– (a, b, 0) C2=m (�2c, 2b, a + c; 0, 1/2, 1/2)
– (a, a, b) C2=c (�a + 2b � c, c � a, a + c; 0, 1/2, 1/2)
– (a, b, c) P1 (b + c, a + c, a + b; 0, 0, 0)
(a, a, a) (b, b, b) R3c (b � a, c � b, 2a + 2b + 2c; 0, 0, 0)
(a, 0, 0) (b, 0, 0) Fmm2 (2c, 2b, �2a; �1/2, 1/2, 0)
(a, 0, 0) (0, b, 0) I4cm (b + c, c � b, 2a; 0, 0, 0)
(a, a, 0) (b, 0, 0) Ima2 (2c, b � a, � a � b; �3/4, 1/4, �1/2)
(a, b, 0) (c, 0, 0) Cm (�2a, �2c, a � b; 0, 0, 0)
(a, 0, 0) (b, 0, b) Ima2 (b + c, b � c � 2a; �1/2, 0, 1/2)
(a, a, 0) (0, b, b) Ima2 (2c, b � a, �a � b; 0, 0, 0)
(a, a, 0) (0, b, �b) Imm2 (a � b, 2c, �a � b; 0, 0, 1/2)
(a, a, b) (0, c, �c) Cm (�a � b �2c, b � a, a + b; 0, 0, 0)
(a, a, 0) (�c, b, �b) C2 (b � a � 2c, a + b, a � b, 1/4, 1/4, �1/2)
(a, a, b) (d, c, c) Cc (�a � b � 2c, b � a, a + b; �1/2, 0, �1/2)
(a, 0, 0) (c, 0, b) C2 (�2b, 2a, b + c; 1/2, �1/2, 0)
(a, b, 0) (0, c, d) Cm (�2a, �2c, a � b; �1/2, 0 1/2)
(a, b, c) (d, e, f ) P1 (�a � c, a + b, a � b; 0, 0, 0)



irrep distortions are expected to be rather robust, weakly

dependent on temperature and therefore well described by

the calculated models. By means of the symmetry-mode

decomposition, the extreme quantitative agreement of sound

ab initio calculations with experimental structural features can

become patent.

As an example, let us consider the case of Bi4Ti3O12. This

Aurivillius compound has a tetragonal I4=mmm configuration

as parent structure, and its room-temperature ferroelectric

phase was the subject of some controversy. While powder

X-ray and neutron powder diffraction studies (Zhou et al.,

2003; Hervoches & Lightfoot, 1999) reported a structure with

space group B2cb [No. 41, B2eb in the new standard notation

(Hahn, 2002)], which is the usual symmetry within the family,

an early single-crystal X-ray analysis (Rae et al., 1990) claimed

that the phase was monoclinic, with space group B1a1, a

subgroup of B2cb. The monoclinic angle was 90� within

experimental resolution, making difficult the experimental

detection of this symmetry reduction with powder diffraction

experiments. However, a first-principles relaxation of the

structure within the discussed B1a1 symmetry and its

comparison with the experimental monoclinic structure,

decomposed into irrep distortions, dissipates any possible

doubt about the actual symmetry of this phase (Perez-Mato et

al., 2008). The B1a1 structure has 57 free positional atomic

parameters, compared with six in the parent tetragonal

structure. The additional 51 degrees of freedom can be divided

into seven distinct irrep subspaces. For our purposes the

specific labels and symmetry-breaking properties of these

seven irreps are not important [more details can be seen in

Perez-Mato et al. (2008)], except that three of them are

compatible with the space group B2cb and the remaining four

are added by the reduction of the symmetry to B1a1. Ordering

these seven subspaces in a fixed way, with the three irreps

consistent with the B2cb symmetry first, the experimental

monoclinic structure can be described by a vector with seven

components/amplitudes (in Å), namely (1.60, 1.43, 0.96, 0.62,

0.08, 0.22, 0.13), and seven specific normalized polarized

vectors defined in each subspace. The dimensions of the seven

subspaces are 8, 11, 3, 5, 8, 9 and 7, respectively. One can see in

the seven-component vector the prevailing weight of the first

three distortion components, i.e. those that are consistent with

the B2cb space group. The modulus of the seven-component

vector, i.e. the total amplitude of the structural distortion, is

2.45 Å, while the three first irrep components already consti-

tute a distortion of 2.35 Å. The remaining orthogonal distor-

tion that reduces the symmetry to B1a1 has a total amplitude

of 0.68 Å. This latter is therefore much weaker, but certainly

significant, with a clear predominance of the first of the four

additional irrep components with an amplitude of 0.62 Å. The

computer-calculated relaxation of the structure within the

B1a1 symmetry resulted in a structure described using the

same parameterization by the following vector: (1.77, 1.33,

1.07, 0.82, 0.10, 0.25, 0.11). As expected, the amplitudes are in

general slightly larger: 2.61 Å versus 2.45 Å for the total

amplitude, 2.46 Å versus 2.35 Å for the B2cb distortion (first

three components) and 0.87 Å versus 0.68 Å for the modulus

of the remaining four components. This slight increase is quite

homogeneous for the seven amplitudes, the relative values

following the same pattern as in the experimental structure.

This similitude of the two structural models can be quantified

by the parallelism of the directions defined by the two vectors

above; their scalar product is 0.995, very close to the ideal

parallelism.

One can further compare the internal form of each irrep

distortion component through the values of the scalar

products of their normalized polarization vectors derived from

the two structural models. These scalar products result to be

�0.998, �0.996, 0.998, 0.99, �0.73, �0.80 and 0.64, respec-

tively. This means that a more adequate description of the

calculated structure, defining polarization vectors similar to

those used for the description of the experimental structure,

would require changing the signs of some amplitudes: (�1.77,

�1.33, 1.07, 0.82,�0.10,�0.25, 0.11). One can check that these

correlated changes of sign of some of the irrep distortion

amplitudes correspond to an equivalent domain-related

configuration, as discussed in x7, and are therefore not

important. Note, however, that they imply that a conventional

mapping of the two structures comparing one-to-one the

atomic positions makes no sense in general. In contrast, the

detailed comparison in terms of symmetry modes demon-

strates quantitatively the striking agreement of the two

structural models, once the expected larger amplitude of the

theoretical distortion is taken into account. The dominant

irrep components in the two structures agree perfectly, as

shown by their scalar products; in particular, the irrep

distortion defined by five parameters with amplitude 0.62 Å,

which is mainly responsible for the symmetry reduction to

B1a1, is reproduced by the theoretical calculation up to a

coincidence given by a scalar product of 0.99. One can surely

not only take for granted that the compound is monoclinic, but

also confirm the monoclinic structural model. Note, however,

how the agreement of the weaker secondary components is

significantly worse. For the irrep components with amplitudes

of the order of 0.1 Å, the scalar product of their polarization

components reduces to values of the order of 0.7. Although

the polarization vectors of weaker distortions are necessarily

less accurate (the error increasing as the irrep distortion

amplitude decreases), the deterioration of the agreement is

somewhat larger than expected from this effect. It seems that

weaker marginal components are less well determined, as

happens in the comparison of experimental structures.

The high level of agreement between ab initio and experi-

mental structures shown in the example above is not excep-

tional when given in this detailed quantitative form. In Perez-

Mato et al. (2009) the P21 experimental structure of SrAl2O4

was compared with an ab initio relaxed structure and the

coincidence of both models is also excellent. This structure can

be considered a distortion from a P6322 parent phase. The

system has five irrep distortions; their symmetry labels and

respective isotropy subgroups are indicated in Fig. 16.

Ordering the components in the form (M2-1q, GM6, M3-1q,

GM5, GM4), the vectors describing the amplitudes of the irrep

distortion components were (1.70, 1.39, 0.57, 0.32, 0.02) and
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(1.81, 1.35, 0.57, 0.24, 0.03) for the experimental and the

ab initio calculated structure, respectively, with their directions

having 0.998 as scalar product. In addition, the scalar products

of the polarization vectors of the five irrep distortions in the

two structures were 0.998, 0.9997, 0.997, 0.96 and 0.63. We can

compare in more detail the polarization vectors of the primary

distortion having 1.70 Å and 1.81 Å amplitudes in the

experimental and theoretical structures, labeled as M2-1q.

Using a set of 12 basis modes, the experimental polarization

vector for this distortion is (�0.15, 0.10, �0.17, �0.22, �0.14,

�0.11,�0.69,�0.53, 0.06,�0.14, 0.05,�0.31), while that in the

ab initio relaxed structure is (�0.14, 0.07,�0.15, �0.22, �0.13,

�0.10,�0.69,�0.54, 0.05,�0.11, 0.02,�0.31). Note that owing

to the different total amplitude of the distortion in the

experimental and theoretical structures, and the contribution

of the weaker irrep distortions, this almost perfect agreement

on this primary distortion could not be detected by a direct

comparison of the atomic coordinates.

11.3. Primary and secondary distortions in ab initio
calculations

The different roles played by primary and secondary

distortions in the stabilization of distorted phases can be

investigated by means of ab initio calculations of the energy

landscape as a function of the amplitudes of the different irrep

distortions detected in the experimental or in the ab initio

relaxed structure. We have seen that the symmetry-mode

decomposition permits one in general to distinguish the

collective degrees of freedom that are unstable in the parent

phase and are responsible for the existence of the observed

phase from those that are present in the distortion, but are

irrelevant for the transition mechanism, in the sense that the

transition would take place independently of their presence or

not. These modes are in fact stable or ‘hard’ modes, despite

their condensation through coupling with the primary distor-

tions.

As an example, Fig. 17 shows the energy variation in

SrAl2O4 (Perez-Mato et al., 2009) as a function of the ampli-

tude of the primary distortion GM6 observed in the experi-

mental P21 structure, the one with amplitude 1.39 Å (see

above). This energy variation is compared with that resulting

from the secondary distortion M3-1q also present in the

experimental structure with an amplitude of 0.57 Å. A sche-

matic view of these distortions is given in Fig. 18. While the

polar GM6 distortion corresponds to an instability of the

parent configuration, the M3-1q distortion that has a weaker

but significant weight in the distortion is a ‘hard mode’. As

shown in Fig. 17, this distortion component by itself is ener-

getically unfavorable, and, if it could be hindered, the struc-

tural instability of the parent structure would still persist.

The expected very different response to external pertur-

bations of the irrep distortions becomes evident when the

resulting ab initio structures are analyzed in terms of

symmetry modes. Fig. 19 shows the amplitudes of the two

primary unstable distortions, GM6 and M2-1q, present in the

ab initio calculated structures as the monoclinic � angle is

varied parametrically, its equilibrium value being about 93.5�

(or 86.5�). In this compound the monoclinic strain is bilinearly

coupled with the irrep distortion GM6, while only higher-

order coupling terms, biquadratic or higher, are allowed with

the second primary distortion M2-1q. This means that the

GM6 distortion is expected to respond linearly to changes in

the monoclinic shear strain, while the response of the M2-1q

would be much weaker and not linear. Furthermore, the

change of sign of the monoclinic shear strain should imply a

corresponding switch of the GM6 distortion and the asso-

ciated dielectric polarization, making the system transit into

an equivalent domain-related configuration, with the GM6

distortion having an opposite amplitude, while the M2-1q

distortion is maintained, in accordance with the general rules

discussed in x7. Fig. 19 shows that indeed the responses of the

two irrep distortions to the forced shear strain follow this

expected pattern. In fact, the M2-1q distortion is essentially
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Figure 17
Calculated relative variation of the energy per formula unit in SrAl2O4 as
a function of either the amplitude of the GM6 distortion or the amplitude
of the M3-1q distortion, both present in the P21 structure of this system.

Figure 16
Graph of maximal subgroups relating the space groups of the parent and
distorted phase of SrAl2O4. For each subgroup any irrep yielding this
symmetry is indicated. The two subgroups corresponding to the primary
active irreps evidenced by the mode decomposition are highlighted. The
dimension of the configuration subspace corresponding to each irrep
distortion is indicated in parentheses.



insensitive to the change of the monoclinic angle, while the

GM6 distortion shows the expected switch and linear varia-

tion. Furthermore, the variation of the internal structure of

the two distortions, monitored by the scalar product of their

polarization vectors with those for a reference value of the

monoclinic angle, is minimal, demonstrating that in a first

approximation the variation of the structure is reduced to

changes of some of the irrep distortion amplitudes. On the

other hand, the variation of the polarization vector of the

M3-1q distortion is significantly larger. As expected, this

secondary distortion, being a higher-order coupling effect,

with contributions of similar weight of different hard modes,

suffers a stronger variation in its internal structure.

11.4. The privileged basis of energy eigenmodes

In x4 we introduced the special physically adapted basis of

symmetry modes feEð�; nÞg constituted by the eigenmodes of

the matrix of second derivatives of the free energy for the

atomic displacements with respect to the parent configuration.

Quantum ab initio calculations within the DFT formalism

allow a theoretical determination of this privileged basis of

eigenmodes, at least in the athermal approximation (i.e.

assuming 0 K). Branches of stiffness constants ��;nðkÞ within

the Brillouin zone, analogous to phonon branches, can be

calculated. The more unstable modes, i.e. those with most

negative and lowest stiffness constants, are expected to prevail

in the distorted phase (or phases) as primary modes. This is the

basis for the construction of effective Hamiltonians for

thermal simulations, where only the degrees of freedom

corresponding to the lowest stiffness constant branches are

included, the rest being subsumed within the heat bath. This

approach implies two important approximations:

(i) neglecting the secondary (hard) modes;

(ii) the frozen primary distortions are supposed to corre-

spond to the static eigenmodes of appropriate symmetry with

the lowest stiffness coefficient.

Comparing the symmetry-mode decomposition of experi-

mental or ab initio relaxed structures with the calculated basis

of energy eigenmodes one can obtain an assessment of the

validity of these approximations. In previous sections we have

seen examples where secondary distortions of different

symmetry than the primary distortion(s) are indeed quite

negligible, as in BaTiO3, but we have also shown other cases

where, although they have much smaller amplitudes, the

secondary distortions are clearly significant. One cannot

quantify their importance in the thermal properties from their
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Figure 19
Calculated variation of some of the irrep distortions present in the P21

structure of SrAl2O4 as a function of the angle � of the monoclinic cell.
(a) Amplitudes of the primary GM6 and M2-1q distortions. (b) Scalar
product of the polarization vectors of the calculated GM6, M2-1q and
M3-1q distortions with those corresponding to � = 90�.

Figure 18
Scheme of the polarization vectors of (a) the GM6 distortion and (b) the
M3-1q distortion present in the P21 structure of SrAl2O4.



weight in the frozen static distortion, but one can expect a

rough direct proportion between both.

Although hard secondary modes are irrelevant for the

existence of the associated instabilities, they can play a

fundamental role in the stabilization of the primary mode(s)

along a specific direction within the irrep subspace, and

therefore in the understanding of the phase diagram and the

symmetries realized in the different phases. The identification

of these significant secondary irrep distortions by means of a

symmetry-mode decomposition of the experimental or the

ab initio relaxed structure is then the first step for improving

the effective Hamiltonian method by including these addi-

tional degrees of freedom.

The validity of the second approximation within the effec-

tive Hamiltonian method mentioned above can be checked

using the basis of calculated energy eigenmodes to describe

the observed primary distortions. In the examples above, the

polarization vectors of the irrep distortions were expressed in

an arbitrarily chosen basis of symmetry-adapted modes. Once

the static eigenmodes feEð�; nÞg for a certain irrep � are

calculated, the amplitudes aE
�;n in equation (11), describing the

observed irrep distortion eð�Þ in the basis of energy eigen-

modes, can be immediately obtained through the scalar

products eEð�; nÞ � eð�Þ.
Let us consider the X3� primary distortion (with respect to

a tetragonal I4=mmm parent configuration) present in the

orthorhombic phase of SrBi2Ta2O9 (Perez-Mato et al., 2004;

Orobengoa et al., 2009). This distortion was shown to be

described by the vector (0.94, 0.34, 0.06, 0.06, 0.01, 0.03, 0.01)

in the basis of energy X3� eigenmodes of the parent structure,

ordered from the lowest to the largest stiffness constant. In

this basis, only the first eigenmode is unstable, the other six all

having positive stiffness constants (Perez-Mato et al., 2004).

One can see that indeed the unstable mode is dominant in the

condensed distortion, but hard X3� eigenmodes have also

small but significant contributions, which, as expected,

decrease in general with the hardness of the eigenmode (see

x4). In particular, the second eigenmode, which is the softest

one after the unstable one, but nevertheless stable, has a

considerable weight in the static X3� distortion. Similarly, a

second primary distortion of symmetry GM5� of polar char-

acter, responsible for the spontaneous polarization of this

compound, was given on the basis of calculated GM5�

eigenmodes by the vector (0.88, 0.32, 0.14, 0.07, 0.09, 0.06,

0.28) with the components also ordered from softer to harder

eigenmodes (Perez-Mato et al., 2004). Also here, only the first

eigenmode is unstable, and one can see an important contri-

bution of the second mode, despite being stable. Furthermore,

in this case, it is remarkable that the hardest eigenmode, which

corresponds to an internal vibrational mode of the TaO6

octahedra, has a large weight in the distortion, breaking the

general trend of decreasing amplitudes with the hardness of

the eigenmode. This is due to a very strong anharmonic

coupling of this mode with the unstable first eigenmode,

dominant in the frozen GM5� distortion.

This mode analysis of the experimental structure, combined

with ab initio calculations, shows that hard eigenmodes with

the same symmetry as the unstable ones can participate

significantly in the distorted phase. This effect can also be

observed in the distortions of simple ferroelectric perovskites.

These hard eigenmodes are, however, excluded from the

restricted configuration subspace usually considered in the

construction of ab initio effective Hamiltonians. This is prob-

ably one of the major sources of error of the method.

12. Conclusions

The development of programs such as AMPLIMODES

(Orobengoa et al., 2009) and ISODISPLACE (Campbell et al.,

2006) and their direct coupling with refinement programs now

allow one to approach without much effort the structural

characterization of any ordered pseudosymmetric structure

with the full power of group representation theory. The

decomposition of displacive distorted structures into

symmetry-adapted modes can be performed in a straightfor-

ward manner, and permits strong fundamental distortions to

be distinguished from those having a marginal character. A

natural hierarchy among the different structural symmetry

components exists in general, and is one of the fundamental

advantages of this approach. The parameterization of the

structures in terms of symmetry modes becomes closer to the

physico-chemical mechanisms responsible for their stability,

and is particularly appropriate for comparative studies. This

paper has been devoted to demonstrating through various

examples the power of this mode crystallography when

applied a posteriori to a known structure, but it is obvious that

its advantages are extensible to its direct use in the determi-

nation of the structures, refining directly the collective

symmetry-mode coordinates. This is today within easy reach of

anyone using the mentioned programs.
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