selenium crystals has a decisive effect on the avolution of their shape as the crystals grow in amorphous films. [1] Malkov V. B. et al. Acta. Cryst. (2006). A62, s260.

Keywords: selenium-1, crystals-2, crystal shape-3

FA2-MS16-P40

Structural Peculiarities of Sillenites. Tatyana I. Mel'nikova^a, Galina M. Kuz'micheva^a, Victor B. Rybakov^b, Nadezhda B. Bolotina^c, A. Cousson^d. ^aLomonosov State Academy of Fine Chemical Technology, Moscow, Russia. ^bLomonosov State University, Moscow, Russia. ^cShubnikov Institute of Crystallography RAS, Moscow, Russia. ^dLaboratoire Leon Brillouin, Cea/Saclay, France. E-mail: melti@list.ru

The phases with general formula $Bi_{24}M_2O_{40}$ or $Bi_{24}(M,M')_2O_{40}$ have sillenite structure (γ -Bi₂O₃, sp.gr. *I23*, z=13) and interesting physical properties such as photoconductivity, piezo-and electrooptical effects and other. Numerous literature data show that properties depend on the M and M' cations in the tetrahedral sites and their formal charges (FC). The aim of this paper is to determine structural peculiarities of the phases with sillenite structure.

The samples of initial compositions (Bi₂₄[M₂]O₄₀ (M=Si, Ge, Ti, Mn, Fe, V, (V+Sm)) and $Bi_{24}[Si_{2-y}M_v]O_{40}$ (M=Mn, V) have been grown by hydrothermal method ($t=400^{\circ}C\pm10^{\circ}C$, p=150MPa) by spontaneous crystallization as cubes and tetrahedral or combination of cubes and tetrahedral. The structure and composition have been found using results of single crystal X-ray (CAD-4 diffractometer–AgK $_{\alpha}$, SHELXL-97 program and Xcalibur diffractometer-MoK_a, JANA2000 program; graphite monochromator) and neutron (5C2, Orphee reactor, λ =0.828Å) studies. Besides, IR-spectroscopy results and crystallochemical analysis have been used.

The phases with $Bi_{24}[M_2]O_{40}$ initial composition can describe by some models (sp.gr. 123) with different point defects:

1. $Bi_{24}[M_{2}^{4+}]O_{40}$: $M^{4+} = Si$, Ge, Ti, Mn (r(M) = 0.26+0.42Å, r(M)-ionic radii; 000 - coordinates for M). These phases are known as "ideal" sillenites.

2. Bi₂₄[$M^{3+}_{2-x}[]_x](Bi_i)O_{40-\delta_x}$ ($M^{3+} = B$ [1], r(B)= 0.11Å; Fe and Ga [2], r(M)= 0.47÷0.49Å; ~0.02 0.02 0.02 -coordinates for

Ga [2], $r(M) = 0.4 / \div 0.49A$; $\sim 0.02 + 0.02 + 0.02 + coordinates for$ $Bi_i) or Bi₂₄[<math>M^{3+}_{2-x}$ []_x] $O_{40-\delta}$ (M^{3+} = Fe, Bi [2]). **3.** Bi₂₄[M^{5+}_{2-x} []_x] O_{40} (M^{5+} = P and As [3]; $r(M) = 0.17 \div 0.33$ Å) or Bi₂₄[$(V^{5+}O)_4$ (BiO)₄] O_{32} (000 – coordinates for V and Bi; two sites for O atoms) [4], Bi₂₄[Bi_x V^{5+}_{y}]_{2-x-y}] O_{40} (O_i) (1/2 0 0 - coordinates for O_i [2], $(Bi_{24,x}]_x)[Bi_{2-y}V^{5+}_y]O_{40}$, $[Bi_{24,y}]_{y}$ msm_w][$Bi_{2-y}V^{5+}_y]O_{40}$ (r(V) = 0.36 Å, r(Sm) = 0.96 Å).

The structures of solid solutions with Bi24[Si2-yMy]O40 (M=Mn, V) initial composition are related to the first model. Their real compositions may be exhibited following ways:

1. $Bi_{24}[Bi^{3+}_{2-y}M_y]O_{40} (M=Mn^{4+}) (sp. gr. P23)$ 2. $Bi_{24}[Si^{4+}_{2-y}M_y]O_{40} (M=Mn^{4+}, Mn^{4+}+Mn^{5+})(sp. gr. P23)$ 3. $Bi_{24}[Si^{4+}_{2-x-y}Bi^{3+}_{x}M_y]O_{40} (M=Mn^{4+}, V^{4+}+V^{5+}, V^{5+}) (sp. gr. P23)$ *I23* and sp. gr. *P23*).

The different space group (sp. gr. 123 or sp. gr. P23) of crystals (a structure dissymmetrization) is attributed to the kinetic phase transition of order-disorder type. The causes are associated with a presence of several atoms in M position of sillenite structure and preparation conditions simultaneously.

[1] Burianek M., Held P., Mühlberg M., Cryst. Res. Technol., 2002, 37, 785-796. [2] Radaev S.F., Simonov V.I., Kristallografiya. 1992, 37, 914. [3] Horowitz H.S., Jacobson A.J., Newsam J.M. et al. Solid

State Ionics, 1989, 32/33, 678. [4] Yudin A.N., Pobedimskaya E.A., Terent'eva L.E. et al. Neorg. Materials, 1989, 25, 1715.

Keywords: sillenites, composition, structure

FA2-MS16-P41

New phases in the Li-Cu-B-O system: Li₃CuB₃O₇, Li₂Cu₉B₁₂O₂₈ and monoclinic Cu₃B₂O₆. Daria Mikhailova^{a,b}, Natalia Kuratieva^{a,c}, Helmut Ehrenberg^a. ^aInstitute for Complex Materials, IFW Dresden, Germany. ^bInstitute for Materials Science, Technische Universität Darmstadt, Germany. ^cInstitute of Inorganic Chemistry SB Russian Academy of Science, Russia. E-mail: d.mikhailova@ifw-dresden.de

Li-containing borates with 3d elements attract a large interest in the last years as potential intercalation electrode materials for Li batteries. For example, LiFeBO3 with chains of distorted edge-shared FeO5-units with Fe2+, was proposed as a perspective cathode material for Li-deinsertion [1]. The advantages of such materials are an existence of 3d metals in different oxidation states and the ability of boron to form BO3triangles and BO₄-tetrahedra, which are connected with each other in a different manner.

The common feature of all known copper(II) borates is a Jahn-Teller distortion of Cu²⁺ coordinated polyhedra due to the electronic configuration of the d^9 ion, which can lead to an anisotropic character of the crystal structure. The information about phases in the Li-Cu-B-O system is deficient and contradictory: three compounds Li₄CuB₂O₆, Li₂Cu₂B₂O₆ and Li₂CuB₄O₈ were synthesized in air, but neither crystal structures nor cell parameters were reported [2].

During phase investigations in the Li-Cu-B-O system we have found some new complex borates at ambient pressure, namely Li₃CuB₃O₇, Li₂Cu₉B₁₂O₂₈ and a new polymorphic modification of $Cu_3B_2O_6$ [3]. This new $Cu_3B_2O_6$ -polymorph with a pseudo-layered monoclinic structure has both BO3triangles and B2O6-units consisting of corner-sharing BO3triangles and BO₄-tetrahedra. In contrast to the well-known triclinic form of Cu₃B₂O₆ [4], layers are linked with each other by BO₄-tetrahedra. Crystal structures of Li₃CuB₃O₇ and Li₂Cu₉B₁₂O₂₈ exhibit only BO₃-triangles, which are connected with each other via corners. Li₃CuB₃O₇ demonstrates infinite Cu₂O-chains from Cu₂O₈-units consisting of edge-sharing CuO₅-pyramids. These chains are responsible for the strong anisotropic character of the thermal expansion of the phase along the a-axis. In the structure of Li₂Cu₉B₁₂O₂₈ CuO₆octahedra and CuO5- pyramids can be identified with Cu-O bonds smaller or equal to 2.7 Å, which are connected with each other in a different manner.

[1] Y. Z. Dong, Y. M. Zhao, Z. D. Shi, X. N. An, P. Fu, L. Chen, Electrochem. Acta 53 (2008) 2339-2345, "The structure and electrochemical performance of LiFeBO₃ as a novel Li-battery cathode material". [2] G. K. Abdullaev, P. F. Riza-Zade, Kh. S. Mamedov, Russ. J. Inorg. Chem. 27 (1982), "Physicochemical

²⁶th European Crystallographic Meeting, ECM 26, Darmstadt, 2010 Acta Cryst. (2010). A66, s188