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The ordering of quantum dots in three-dimensional quantum dot lattices is

investigated by grazing-incidence small-angle X-ray scattering (GISAXS).

Theoretical models describing GISAXS intensity distributions for three general

classes of lattices of quantum dots are proposed. The classes differ in the type of

disorder of the positions of the quantum dots. The models enable full structure

determination, including lattice type, lattice parameters, the type and degree of

disorder in the quantum dot positions and the distributions of the quantum dot

sizes. Applications of the developed models are demonstrated using experi-

mentally measured data from several types of quantum dot lattices formed by a

self-assembly process.

1. Introduction

Materials containing quantum dots (QDs) have been widely

investigated in the last decade because of their interesting

size-tunable properties (Alivisatos, 1996; Bostedt et al., 2004;

Hanson, 2009) and many potential applications in semi-

conductor technology and opto-electronic devices (Jabbour &

Doderer, 2010; Ladd et al., 2010; Konstantatos & Sargent,

2010). Especially interesting is the production of materials that

contain regularly ordered QDs, often called QD lattices. The

regular ordering of QDs implies narrowing of the QD size

distribution and better control over the QD separations

(Buljan, Desnica et al., 2009a). The applicability of such

materials is often based on the quantum confinement effect of

carriers (Bostedt et al., 2004) or on collective effects (Grütz-

macher et al., 2007), which are both very sensitive to the

arrangement and size properties of the QD system.

Ordered QD systems can be fabricated by various methods.

The most usual one is the growth of crystalline multilayers

where the lattice mismatch between different layers causes

ordering of QDs mediated by the local elastic strain fields

(Stangl et al., 2004) or by colloidal synthesis (Alivisatos, 2000).

Recently it was shown that the production of self-ordered

QDs is also feasible in amorphous multilayers (Buljan,

Desnica et al., 2009a,b; Buljan, Pinto et al., 2010; Buljan,

Grenzer, Keller et al., 2010). The ordering in such systems was

achieved by growth at an elevated substrate temperature, at

which an interplay of diffusion and surface morphology

mechanisms causes the self-organized growth and formation

of three-dimensional QD lattices. Some other recent investi-

gations (Buljan, Bogdanović-Radović et al., 2009, 2010, 2011)

demonstrated the formation of long-range-ordered quantum

dot arrays in an amorphous matrix by ion beam irradiation. In

this growth method the ordering is induced by irradiation of

an entirely amorphous multilayer by light ions under oblique

incidence.

For the successful development and subsequent application

of the methods for the production of well ordered QD arrays,

the experimental methods for precise structural character-

ization of such materials are very important. Real-space

imaging techniques like transmission electron micrography

(TEM) or atomic force microscopy (AFM) are often used;

however, they probe the structure of a limited area of the

sample cross section or surface only, so that the statistical

relevance of the data might be poor. The advantage of scat-

tering methods in the far-field limit like grazing-incidence

small-angle X-ray scattering (GISAXS) is that they yield

experimental data with excellent statistics (typically 1012 QD

in the irradiated volume). This is especially suitable for the

analysis of ordered QD systems such as QD lattices, where

spatial correlations in QD positions can be easily observed

and qualitatively described. On the other hand, scattering

methods are indirect, since they measure a reciprocal-space

distribution of the scattered intensity and the retrieval of real-

space information is not a trivial task. Usually, one has to use a

suitable structure model, from which the reciprocal-space

distribution of the scattered intensity is simulated and

compared to experimental data. Direct methods for the

retrieval of the real-space image from data in reciprocal space

work only on a single quantum dot, so that they cannot give

information relevant for a large dot ensemble (see Pfeifer et

al., 2006 and citations therein).

Up to now GISAXS has been successfully applied to the

analysis of many QD systems, and a comprehensive review
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showing the basic theory of GISAXS and its different appli-

cations is given in Renaud et al. (2009). There are several

software packages available for the simulation of GISAXS

data [IsGISAXS (Lazzari, 2002) and FitGISAXS (Babonneau,

2010)].

In most works published to date, only two-dimensional

disordered arrays of nano-sized objects (nanocrystals,

quantum dots etc.) have been considered (see Renaud et al.,

2009 and references therein) and only very little attention has

been paid to a detailed analysis of regularly ordered three-

dimensional ensembles of nano-objects. In our previous works

(Buljan, Desnica et al., 2009b; Buljan, Bogdanović-Radović et

al., 2010) we have developed two models for GISAXS char-

acterization of three-dimensional lattices of nanocrystals.

However a detailed and comprehensive formulation of a

variety of possible three-dimensional ordered arrays of

quantum dots is still missing. In this paper we formulate

several theoretical models of the positions of quantum dots

in three-dimensional quantum dot lattices. Two approaches

are used, namely the short-range-order (SRO) model and

the long-range-order (LRO) model. Starting from one-

dimensional SRO and LRO models we formulate a two-

dimensional SRO model of the dot positions similar to the

well known ideal paracrystal model (IPM, see Eads & Millane,

2001). Then, based on this two-dimensional model, we develop

three distinct three-dimensional SRO/LRO models of the dot

positions. We use the models of the dot positions for the

simulation of the reciprocal-space distribution of the intensity

scattered in a GISAXS experiment. Each structure model is

accompanied by an experimental example. The application of

the models allows determination of the type of QD lattice,

lattice parameters, the parameters of the position disorder, as

well as the average size of the QDs and their size distribution.

The models are especially suitable for the description of QD

lattices grown by a self-organization process in multilayers or

homogeneous thick films; however they can be applied to any

QD lattice that fulfils the model constraints.

The paper is organized as follows. In x2 we show several

experimental examples of QD lattices

and discuss their structural properties.

We also demonstrate that different

structural models have to be used for

their description. The main part of the

paper is contained in x3, where the one-

dimensional, two-dimensional and

three-dimensional structural models of

the QD lattices are developed. This

section also contains examples where

the theoretical simulations of the

GISAXS intensity distributions are

compared with experimental data. The

limitations of the developed models and

some important notes for their

successful application in the structural

analysis are given in x4. The conclusions

are given in x5.

2. Three-dimensional QD lattices –
structural overview

In this section we describe several types

of QD lattices, which serve as repre-

sentative experimental examples of

systems with various types of ordering

of the dot positions. The first system is

formed by self-organized growth of a

(Ge+SiO2)/SiO2 multilayer on a flat

substrate (Buljan, Desnica et al.,

2009a,b). The QDs are formed within

the layers of the multilayer, so the

vertical components of the QD lattice

vectors obey long-range ordering,

induced by the multilayer periodicity.

The regular three-dimensional ordering

of the Ge quantum dots formed is

achieved during deposition at 773 K and
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Figure 1
GISAXS intensity distributions and corresponding STEM images shown in insets measured on
different films containing Ge QD lattices in amorphous matrices. (a) (Ge+SiO2)/SiO2 multilayer
deposited on a flat substrate at 773 K, and annealed at 1073 K after the deposition. (b) (Ge+Al2O3)/
Al2O3 multilayer deposited on a flat substrate at 773 K. (c) (Ge+SiO2)/SiO2 multilayer deposited at
room temperature and irradiated with 3 MeV O3þ ions. The multilayer was annealed at 1073 K after
the irradiation. (d) Ge+Al2O3 continuous thick film deposited on a flat substrate at 773 K.



it is induced by an interplay of the surface morphology effect

and diffusion-mediated nucleation. The resulting lattice of

QDs has rhombohedral structure and consists of small

domains randomly azimuthally rotated around the normal to

the multilayer surface. A scanning tunnelling electron micro-

scopy (STEM) image of the system and the corresponding

GISAXS map are shown in Fig. 1(a). In the STEM image, a

weak regularity in the dot positions can be observed; however

the number of QDs in the depicted area is too small for a

reliable determination of the degree of ordering. In contrast,

because of a very large number of coherently irradiated dots,

the ordering is very clearly visible in the GISAXS map – a

regular ordering gives rise to strong satellite intensity maxima.

A similar system, but with a better degree of ordering, is

represented by a (Ge+Al2O3)/Al2O3 multilayer (Buljan,

Radić et al., 2011). The GISAXS map of such a QD lattice and

the corresponding STEM image are shown in Fig. 1(b).

A further example considers a QD system formed by

ion beam irradiation of a fully amorphous (Ge+SiO2)/SiO2

multilayer (Buljan, Bogdanović-Radović et al., 2009, 2010,

2011). The angle of the irradiation was 60� with respect to the

multilayer surface. The irradiation causes ordering of QDs in

chains along the irradiation direction. The lateral positions of

the chains obey a two-dimensional SRO model; however the

lateral positions of the dots in a given chain are ordered

according to a one-dimensional LRO model. The vertical dot

positions are almost perfectly periodic, since they follow

exactly the multilayer periodicity. GISAXS and STEM images

of this system are shown in Fig. 1(c). Ordering of the QDs

along the chains in the irradiation direction is visible in the

STEM image, while the presence of the dot chains is the

reason for strong tilted intensity maxima (‘Bragg sheets’) in

the GISAXS map. The in-plane correlation of the positions of

the chains causes additional lateral satellites.

The last example demonstrating an ordering obtained in a

single continuous Ge+Al2O3 layer is shown in Fig. 1(d). Even

if no multilayer was deposited, a regularly ordered QD system

was formed during the film growth. Therefore the main

difference from the previous examples is that the vertical

positions of the QDs in a QD lattice are not pre-determined

like in the multilayer case. Thus, the vertical positions of the

QDs obey the SRO model as well. Details of the driving force

for the QD ordering in this system can be found in Buljan,

Pinto et al. (2010). More examples of QD lattices and corre-

sponding GISAXS maps can be found in Buljan, Grenzer,

Keller et al. (2010), Buljan, Grenzer, Holý et al. (2010) and

Pinto et al. (2011).

The GISAXS intensity distributions were measured at the

small-angle X-ray scattering beamline of the synchrotron

Elettra, Trieste, Italy, using a photon energy of 8 keV, and a

two-dimensional image-plate detector. The detector was

perpendicular to the probing sample and almost perpendicular

to the incoming X-ray beam. The scattered radiation was

collected for a constant incidence angle slightly above the

critical angle of total external reflection of the investigated

films. STEM images were taken with a JEOL2010F micro-

scope, operated at 200 kV and equipped with a field-emission

gun and a high-angle annular dark-field detector (HAADF)

for Z-contrast imaging.

All the examples listed above present ordered QD arrays,

which differ not only in the degree of ordering, but also in the

ordering model. The structure of the multilayer stack, irra-

diation effects and/or self-assembly features have different

effects on the type of QD ordering. In particular, the QDs may

follow an LRO-type ordering model along some direction and

SRO along the other ones. In addition, the degree of disorder

may be different in different directions. These simple exam-

ples demonstrate the rich variety of various orderings and the

importance of a proper formulation of the ordering model. In

the next section, we present a theory describing three models

of dot ordering corresponding to the experimental examples

presented above, and we show the respective simulated

GISAXS intensity distributions.

3. Quantum dot ordering models and simulation of the
scattered intensity

The distribution of the intensity in reciprocal space scattered

in a GISAXS experiment can be calculated by the distorted-

wave Born approximation (DWBA). In this approach one

divides the sample into two parts – a non-disturbed system and

the disturbance. The scattering from the non-disturbed system

is calculated exactly (i.e. using the multiple-scattering dyna-

mical theory), whereas the disturbance scatters only kinema-

tically. This approach is very frequently used; however its

validity has to be discussed and confirmed in any particular

system. Generally speaking, the DWBA approach is applic-

able if multiple scattering from the disturbance can be

neglected. In the case of quantum dots arranged in a three-

dimensional matrix embedded in a semi-infinite medium, one

usually considers the medium as the non-disturbed system and

the ensemble of the quantum dots as the disturbance.

In the following we assume that the dots are fully buried in

an amorphous semi-infinite substrate with an ideally flat

surface (i.e. the influence of the surface roughness is

neglected). The reciprocal-space distribution of the wave

scattered from the substrate exhibits an infinitely narrow rod-

like maximum along the surface normal (crystal truncation

rod, CTR) and the intensity distribution along the CTR is

determined by the specular reflectivity of the substrate.

In the following, we neglect this wave and consider only the

wave scattered from the dots. The reciprocal-space distribu-

tion of the wave scattered from the dots is

IðQÞ ¼ Aj�%j2jtitfj
2

�

�P
R;R0

�RðqÞ�
�
R0 ðqÞ exp½�iðq � R� q� � R0Þ�

�
: ð1Þ

In this formula A is a constant, �% is the difference in the

electron densities of the dot material and the surrounding

matrix, R;R0 are position vectors of the dots, Q ¼ Kf � Ki is

the scattering vector (the difference of the wavevectors of the

scattered and incident beams), q is the complex scattering
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vector corrected to refraction at the vacuum–substrate inter-

face (for details see Renaud et al., 2009) and

�RðqÞ ¼
R

d3r �RðrÞ expð�iq � rÞ

is the Fourier transformation of the shape function �RðrÞ of a

dot occurring in position R; the shape function is unity in the

dot volume and zero outside it. ti;f are the Fresnel transmit-

tivities of the substrate surface corresponding to the primary

and scattered waves, respectively; the factor jtitfj
2 exhibits a

maximum (so-called Yoneda wing) if the incidence angle �i

and/or the exit angle �f equal the critical angle �c of total

external reflection.

The hi brackets in equation (1) denote the averaging over

the positions and shapes of the quantum dots. In order to

calculate this averaging, one has to assume how the dot sizes

are connected with their positions. In the literature, two

limiting approaches can be found (Renaud et al., 2009). The

decoupling approximation (DA) assumes that the sizes of the

dots are not statistically correlated with their positions

(Guinier, 1963). Strictly speaking, this approximation is valid

only in very diluted systems; usually it is reasonable to assume

that the distance between larger dots is on average larger than

between smaller dots. The local monodisperse approximation

(LMA) assumes that the sample is divided into domains, each

domain containing dots of a given size and given distribution

of the distances (Pedersen, 1994; Renaud et al., 2009). In each

domain one calculates the average over the dot positions and

finally the averaging over the domains is carried out. In this

paper we will restrict ourselves to the DA only.

Within the DA, the averaging indicated in equation (1) is

straightforward. After some algebra one obtains

IðQÞ ¼ Ajtitfj
2
j�%j2

�
j�FT
ðqÞj2

� �
� �FT

ðqÞ
� ��� ��2h i

�GIðqÞ þ �FTðqÞ
� ��� ��2GðqÞ

�
: ð2Þ

Here we have denoted

GIðqÞ ¼
P
R

exp½�iR � ðq� q�Þ�

� �
; ð3Þ

this function equals the number N of the QDs if we neglect the

imaginary part of the scattering vector q. The function

GðqÞ ¼
P

R;R0
exp½�iðq � R� q� � R0Þ�

* +
ð4Þ

is the correlation function of the dot positions; the averaging

here is performed only over the dot positions. In the following

we denote f1ðqÞ ¼ hj�
FTðqÞj2i and f2ðqÞ ¼ jh�

FTðqÞij2.

The main goal of this paper is to formulate physically

relevant models of the positions of the quantum dots, from

which we can calculate the correlation function G. As we

emphasized in x1, both SRO and LRO approaches are used.

Within SRO, the position of a given dot is affected only by the

positions of the neighbouring dots, while LRO assumes that

the dots randomly deviate from pre-defined periodic ideal dot

positions. In the following, we will derive the correlation

functions for one-dimensional and two-dimensional dot arrays

arranged within the SRO and LRO models, and finally we

present the correlation function of a three-dimensional dot

ensemble; for this case we will use a combination of the SRO

and LRO models.

3.1. One-dimensional SRO model

Let us start with a one-dimensional chain of quantum dots

along the x axis and we index the dots by the integer index

n ¼ 0; . . . ;N � 1. The position of the dot with index n with

respect to the origin is denoted by Rn which can be expressed

as a sum of random connection vectors Ln ¼ Rn � Rn�1,

Rn ¼ L1 þ L2 þ � � � þ Ln ð5Þ

or in terms of basis vectors a of one-dimensional ideal

(undisturbed) lattice and deviation vectors d

Rn ¼ naþ
Pn
j¼1

dj ¼ naþDn; ð6Þ

where Dn denotes the total deviation of a dot with index

n from its ideal position. The mean value of the

connection vectors hLi 	 a, i.e. Ln ¼ aþ dn. We assume that

Ln;Lm; n 6¼ m are statistically independent.

A direct calculation of equation (4) yields the one-

dimensional correlation function in the form

G
ð1Þ
SROðqÞ ¼ N þ 2Re

�
��

1� ��

	
N �
ð��ÞN � 1

��� 1


�
; ð7Þ

where

�ðqÞ ¼ expð�iq � aÞ; �ðqÞ ¼ hexpð�iq � dÞi; ð8Þ

and we have neglected absorption effects, so q = q�.

Absorption will be introduced in the three-dimensional

model. In equation (7) N denotes the number of the coher-

ently irradiated dots; if this number is very large (i.e. if the

mean dot distance is much smaller than the size of the

coherently irradiated sample surface), one can use the limiting

expression for N!1:

G
ð1Þ
SROðqÞ ! N

	
1þ 2Re

�
��

1� ��

�

: ð9Þ

The function �ðqÞ contains the undisturbed positions of the

dots, while the function �ðqÞ depends on the statistical distri-

bution of the deviation vectors d. We have assumed that the

components �x;y;z of the random deviation d are normally

distributed with zero mean and root mean square (r.m.s.)

dispersion �x,�y and �z,

�xðqxÞ ¼ exp½�ð�xqxÞ
2=2�

�yðqyÞ ¼ exp½�ð�yqyÞ
2=2�

�zðqzÞ ¼ exp½�ð�zqzÞ
2=2�

�ðqÞ ¼ �x�y�z: ð10Þ

Fig. 2 presents examples of the calculated correlation func-

tions for �x ¼ �y ¼ �z ¼ �. In panel (a) of this figure we

plotted the values of Gð1ÞðQxÞ along the Qx axis parallel to a.
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The correlation function exhibits maxima (satellites) in the

points Qxm ’ 2�m=a, where a ¼ jaj and m is an integer

(satellite order). The full width at half-maximum (FWHM) of

the zero satellite is �1ð0Þx ¼ 2�=ðNaÞ; in the limiting case in

equation (7) the central peak is infinitely narrow (�-like). For

finite N, the central maximum is accompanied by tiny fringes

with the period of 2�=ðNaÞ. Since the degree of coherence of

the primary beam usually continuously decreases from unity

to zero, these fringes are not observed and in the following

they are removed by averaging the correlation function over

various N’s. This averaging does not affect the shape of the

non-zero satellites. The FWHMs of the non-zero satellites

depend almost quadratically on the satellite order m.

Fig. 2(b) displays the one-dimensional correlation function

Gð1Þ as a function of two components Qx;y of the scattering

vector. In the reciprocal QxQy plane the correlation function

exhibits a streak along the Qy axis, with increasing jQyj the

streaks become broader and weaker. Here we have

neglected refraction and absorption to keep the focus on the

ordering properties. Thus, for this case, Q ¼ q. Refraction

and absorption effects will be introduced later in three-

dimensional models.

3.2. One-dimensional LRO model

A one-dimensional system of QDs can be described by an

LRO model if the positions of QDs fluctuate independently

around their pre-defined (ideal) positions. Thus, within the

LRO model, the position Rn of the nth dot can be expressed

as

Rn ¼ naþDn ¼ naþ dn; ð11Þ

where random vectors dn describe the deviation of the dot

from its ideal position. Within the SRO model, the position of

the dot with index n was defined with respect to the position of

the dot with index n� 1, so the total deviation from the

undisturbed position increases with n. Thus, the main differ-

ence between SRO and LRO models is the total deviation

vector of the dot n with respect to the origin: DSRO
n ¼

Pn
i¼1 di

for the SRO model while DLRO
n ¼ dn for the LRO model.

Assuming that vectors dn are statistically independent we

obtain the correlation function for the LRO model,

G
ð1Þ
LROðqÞ ¼

�
N þ j�j22Re

	
�

1� �

�
N �

�N � 1

� � 1

�
�
; ð12Þ

where �ðqÞ and �ðqÞ are defined in equation (8).

Fig. 3 compares the correlation function of one-dimensional

chains of QDs arranged in LRO and SRO models. Analo-

gously to the SRO model we assumed that the random

deviations dn have zero average values and their components

are normally distributed, while different components of dn are

statistically independent. In contrast to the SRO model, the

widths of the correlation peaks in the LRO do not depend on

the r.m.s. deviation �L and they are inversely proportional to

the size Na of the coherently irradiated chain. By increasing

the disorder in the dot positions, the diffuse part of the

correlation function between the maxima increases.

3.3. Two-dimensional models

The construction of a physically sound two-dimensional

SRO model is not a straightforward task. One possible

approach (the IPM; Eads & Millane, 2001) assumes that each

dot is labelled by two indexes n1;2 and its position vector can

be written as

Rn1n2
¼ L

ð1Þ
1 þ L

ð1Þ
2 þ � � � þ Lð1Þn1

þ L
ð2Þ
1 þ L

ð2Þ
2 þ � � � þ Lð2Þn2

;

ð13Þ

i.e. two types of the connection vectors Lð1;2Þ are assumed with

the mean values

hLðjÞi ¼ aðjÞ; j ¼ 1; 2:

Therefore, the IPM assumes that the dots occupy the points of

a disordered two-dimensional lattice with the lattice vectors

að1;2Þ,

Rn1n2
¼ n1að1Þ þ n2að2Þ þDð1Þn1

þDð2Þn2
; DðjÞnj

¼
Pnj

m¼1

dðjÞm ; j ¼ 1; 2:

After simple calculation we obtain the following expression

for the two-dimensional correlation function,

research papers

128 Maja Buljan et al. � Quantum dot lattices – GISAXS study Acta Cryst. (2012). A68, 124–138

Figure 3
Comparison of correlation functions of one-dimensional SRO and LRO
models calculated with the same parameters as in Fig. 2.

Figure 2
(a) Correlation function of the one-dimensional SRO model plotted
along the Qx axis parallel to the dot chain (see text for the chain
parameters). The simulations were performed for a fixed mean number
N ¼ 20 of the dots and the same mean separation a ¼ 20 nm; � ¼ 3 nm
for line (1) and � ¼ 6 nm for line (2). (b) Correlation function
G
ð1Þ
SROðQx;QyÞ as a function of two components ðQx;QyÞ calculated with

the same parameters as for line (1); the dot chain is oriented along the x
axis.



G2D;SROðqÞ ¼ G
ð1Þ
1D;SROðqÞG

ð2Þ
1D;SROðqÞ; ð14Þ

where G
ðjÞ
1D;SROðqÞ; j ¼ 1; 2 are the one-dimensional correla-

tion functions described in equation (7), in which the functions

�ðqÞ and �ðqÞ are replaced by

�ðjÞðqÞ ¼ expð�iq � ajÞ; �ðjÞðqÞ ¼ exp½�iq � dðjÞ�
� �

; j ¼ 1; 2:

Fig. 4(a) shows the positions of the dots generated randomly

using the IPM and normal distribution of the deviations

�ðjÞ; j ¼ 1; 2; in the simulation we used the values jað1Þj ¼

jað2Þj ¼ 20 nm and �ð1Þ ¼ �ð2Þ ¼ 2 nm. The corresponding

correlation function is plotted in Fig. 4(b). The satellite

maxima of the correlation function lie in the points of a

lattice reciprocal to the lattice generated by the vectors

að1;2Þ; the FWHMs of the maxima increase with the satellite

orders.

The IPM is not fully applicable if the dots are created by a

self-organization process resulting in a random lattice, since

the IPM assumes the existence of an a priori defined ideal

lattice with the basis vectors að1;2Þ. This is illustrated in Fig. 5,

where we have plotted the positions of the dots generated

randomly assuming that the random nearest dot distances

obey the Gamma distribution with the given mean hLi and

given r.m.s. dispersion �L. The simulation has been carried out

using the Monte Carlo (MC) accept–reject sampling method

described by Robert & Casella (2004).

Comparing Figs. 4(a) and 5(a) it is obvious that, in contrast

to the IPM, the array of randomly generated dots does not

exhibit any pre-defined lattice directions, in spite of the fact

that the distributions of the nearest dot distances are very

similar (see the insets in Figs. 4a and 5a). The correlation

function of the randomly generated array of dots is isotropic

(see Fig. 5b) and no distinct satellite maxima in reciprocal-

lattice points are visible.

In Fig. 6 we compare the radial profile Gð2ÞðQÞ of this

correlation function with the radial profile of the correlation

function G
ð2Þ
IPMðQÞ (plotted in Fig. 4b) averaged over all

azimuthal directions of the vector Q. The dashed line denotes

the azimuthally averaged function G
ð2Þ
IPMðQÞ which was calcu-

lated for the same value �� ¼ 2 nm as that used by the MC

simulations in Fig. 5(a); obviously the maxima in this corre-

lation function are much narrower than those following from

the MC simulation. In order to get a good match of both radial

correlation functions, we have to increase the �� value of the

IPM model to �� ¼ 4 nm (unbroken line). From Fig. 6 it

follows that the correlation function of the IPM azimuthally

averaged over all directions of the scattering vector Q is a

good approximation of the correlation function of a two-

dimensional SRO model generated by an MC simulation, in

which the directions of the connection vectors L are isotro-

pically distributed; however, one has to use an approximately

two times larger r.m.s. dispersion of the dot distances in the

IPM model.

3.4. Three-dimensional models

In the previous sections we constructed the one- and two-

dimensional SRO models as well as an LRO model of the

positions of quantum dots and we calculated the corre-

sponding correlation function. The next step, i.e. the definition

of a three-dimensional model, depends much on the

mechanism of the ordering of the quantum dots during their

nucleation and growth. In the following, we formulate three

various three-dimensional models realized by different
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Figure 4
(a) Positions of the dots randomly generated using the two-dimensional
ideal paracrystal model (IPM). The inset displays the histogram of the
nearest dot distances, the pair of short black lines denote the vectors að1;2Þ.
The parameters of the correlation are described in the text. (b) The two-
dimensional correlation function of the IPM calculated with the same
parameters as in panel (a).

Figure 5
(a) Positions of quantum dots randomly generated using a given
distribution of nearest distance and an accept–reject method; we used
the same mean distance and the r.m.s. deviation as in Fig. 4. The inset
shows the actual distribution of the nearest distances determined from
the generated dot positions. (b) The two-dimensional correlation function
obtained from the dot positions shown in panel (a).

Figure 6
The radial correlation function of the two-dimensional SRO model
obtained by numerical Monte Carlo method (dots) using �� ¼ 4 nm, and
the azimuthally averaged correlation functions of the IPM model with
�� ¼ 2 nm (dashed line) and 4 nm (unbroken line).



experimental recipes and compare the theoretical descriptions

with experimental results.

For all systems we assume that the quantum dots create a

disordered three-dimensional lattice with the averaged basis

vector a1;2;3. Each dot is labelled by three indexes n1;2;3 and its

position is given by

Rn1;n2;n3
¼ n1að1Þ þ n2að2Þ þ n3að3Þ þDð1Þn1

þDð2Þn2
þDð3Þn3

; ð15Þ

where DðjÞnj
; j ¼ 1; 2; 3 are the random displacement vectors,

describing the deviation of the dot position from the ideal

position from the origin corresponding to the basis vectors

að1;2;3Þ.

The SRO and LRO models differ in the definition of the

displacement vectors as was shown in xx3.1 and 3.2:

DðjÞnj
¼

�Pnj

m¼1 dðjÞm ; SRO model

dðjÞm ; LRO model
: ð16Þ

The geometry used for the description and modelling of

GISAXS intensity distributions is schematically shown in

Fig. 7. The primary X-ray beam lies in the xz plane (plane of

incidence) and makes a small angle �i (angle of incidence)

with the x axis (Fig. 7a). All experimental GISAXS maps were

taken with �i = 0.2�, i.e. very close to the critical angle �c of

total external reflection. In the actual experimental arrange-

ment the detector plane was perpendicular to the primary

beam; however, for the sake of simplicity we calculate the

intensity distribution in the reciprocal QyQz plane perpendi-

cular to the sample surface. The distortion of the intensity map

due to the angle �i of the detector plane with the yz plane is

negligible.

The vectors að1;2Þ lie in the plane

parallel to the substrate (xy plane),

while the direction of the vector að3Þ

corresponds to the direction of the

correlation of the positions of the dots

belonging to different periods of the

multilayer. The z component of að3Þ [að3Þz ]

corresponds to the multilayer period.

Thus, the coordinates of the basis

vectors að1;2;3Þ are

að1Þ ¼ ½að1Þx ; að1Þy ; 0� ð17Þ

að2Þ ¼ ½að2Þx ; að2Þy ; 0� ð18Þ

að3Þ ¼ ½að3Þx ; að3Þy ; að3Þz �: ð19Þ

The choice of the basis vectors is based

on the growth process of the samples.

The diffusion and growth properties are

usually similar in the plane parallel to

the substrate, while they are different in

the growth direction (assumed perpen-

dicular to the substrate). However, the

models developed are generally valid

for any choice of the basis vectors. We

will use two configurations in the simu-

lations of GISAXS intensity distributions, namely assuming

that (i) the probing beam is parallel (jj, Fig. 7b) and (ii)

perpendicular (?, Fig. 7c) to the common plane of a3 and the

surface normal.

The absorption effects are included in the three-

dimensional model via the imaginary part of the complex

scattering vector q. For the chosen geometry, ImðqÞ 6¼ 0 only

for the z component of q, while the parallel components are

real and equal to those in vacuum qk 	 ðqx; qyÞ ¼ Qk. To keep

the formulas as simple as possible, we neglect the absorption

in the distances comparable to the deviations dm of the dots

from their ideal positions. Then, the functions �ðjÞ ¼
hexp½�iq � dðjÞ�i; j ¼ 1; 2; 3 defined in the previous section

contain only the real part qr 	 ½qx; qy;ReðqzÞ� of the scat-

tering vector q.

The total intensity [equation (1)] in the three-dimensional

case is given by

IðQÞ ¼ Aj�%j2jtitfj
2FðqzÞ

� f½f1ðqÞ � f2ðqÞ�N1N2�ðqzÞ þ f2ðqÞG3DðqÞg; ð20Þ

where

FðqzÞ ¼ exp½�2ImðqzÞN3að3Þz �;

�ðqzÞ ¼
1� exp½2ImðqzÞN3að3Þz �

1� exp½2ImðqzÞa
ð3Þ
z �

: ð21Þ

N3 is the number of the dots along the basis vector að3Þ and

G3DðqÞ is given by the product of three one-dimensional

correlation functions. The functions f1;2ðqÞ are defined in x3.

In the three-dimensional models discussed later we will

treat separately the x, y and z components of the random

research papers

130 Maja Buljan et al. � Quantum dot lattices – GISAXS study Acta Cryst. (2012). A68, 124–138

Figure 7
The geometry of the GISAXS experiment. (a) The orientation of the primary and scattered X-ray
beams with the wavevectors Ki and Kf , respectively. The plane of incidence is xz, the detector plane
is parallel to the yz plane. (b) The orientation of the basis vectors að1;2;3Þ of the dot lattice. The
vectors að1;2Þ lie in the xy plane parallel to the sample surface. The circular arrow indicates possible
averaging over the azimuthal orientations of the vector set að1;2;3Þ, keeping constant the angles
between the vectors. (c) and (d) show the parallel ðkÞ and perpendicular ð?Þ configurations, in which
the vector að3Þ lies in the xz and yz planes, respectively.



vectors dðjÞ to have the generally valid formulas. This is

necessary because deviations around ideal positions are not

necessarily isotropic; their r.m.s. deviations may be different in

different directions, for example in the case of nucleation on

pre-patterned substrates. Another reason is that the ordering

type may be different for different components of the same

basis vector (SRO or LRO), as in the case of the multilayer

stack which is described by the LRO model, while the basis

vector að3Þ is not perpendicular to the multilayer surface. All

these cases will be shown in the specific models given below.

Thus we deal in total with three components of three deviation

vectors (nine in total), and we assume that the components

�ðjÞp ; j ¼ 1; 2; 3; p ¼ x; y; z are statistically independent with

zero means and r.m.s. dispersions �ðjÞp . Therefore the functions

�ðjÞðqÞ, ( j ¼ 1; 2; 3) can be written as a product of three

components:

�ðjÞ ¼ �ðjÞx �
ðjÞ
y �
ðjÞ
z : ð22Þ

The components are given by

�ðjÞx ¼ expf�½�ðjÞx qx�
2=2g

�ðjÞy ¼ expf�½�ðjÞy qy�
2=2g

�ðjÞz ¼ expf�½�ðjÞz ReðqzÞ�
2=2g: ð23Þ

In the following we consider three specific cases (models)

differing in the type of QD ordering.

3.5. Model 1

Model 1 describes a system of QDs with the same type of

ordering along all three average basis vectors [að1;2;3Þ]. If the

QD positions along all basis vectors obey SRO ordering, this

model is suitable for the description of QD systems formed by

a self-assembly process with no external constraints. Such

systems may be realized by arrays of QDs formed by self-

ordered growth in thick homogeneous layers (Buljan, Pinto et

al., 2010) or in multilayers where the layer sequence can be

described by the SRO model.

The correlation function Gð3ÞðqÞ for this case is a general-

ization of the two-dimensional SRO ideal paracrystal model,

i.e. it is a product of three one-dimensional SRO correlation

functions:

G3DðqÞ ¼ G
ð1Þ
1D;SROðqÞG

ð2Þ
1D;SROðqÞG

ð3Þ
SROðqÞ; ð24Þ

where the G
ð1;2Þ
1D;SROðqÞ are given by equation (7) and

G
ð3Þ
SROðqÞ ¼ �þ 2Re

�
�ð3Þ

�ð3Þ
�
� �ð3Þ

�
��
½�ð3Þ�ð3Þ�N3 � 1

�ð3Þ�ð3Þ � 1

��
:

ð25Þ

Here, G
ð3Þ
SROðqÞ differs slightly from G

ð1;2Þ
1D;SROðqÞ because

absorption effects are included in it via the imaginary part of

the z component of the scattering vector q.

Using correlation function G3DðqÞ and equation (20), we

have simulated the two-dimensional GISAXS intensity

distributions. The simulations are shown in Fig. 8. The simu-

lations are performed for various parameters of the disorder.

The QDs are assumed to be spherical and arranged in a

rhombohedral lattice with the basis vectors given in Table 1,

along with the parameters of the disorder and dot sizes. Two

types of intensity sheets (indicated by the lines in Fig. 8a) may

Acta Cryst. (2012). A68, 124–138 Maja Buljan et al. � Quantum dot lattices – GISAXS study 131

research papers

Figure 8
Simulations of two-dimensional intensity maps obtained with model 1 for
various values of the disorder parameters. The results for the ? geometry
[the probing beam perpendicular to the in-plane component of the
basis vector að3Þ] are shown. We assumed �ð1Þx ¼ �

ð1Þ
y ¼ �

ð2Þ
x ¼ �

ð2Þ
y and

�ð1Þz ¼ �
ð2Þ
z . (a)–(c) Influence of �ð1;2Þx;y . The dashed lines parallel to the Qz

axis indicate the sheets caused by the in-plane correlation of the QD
positions. The correlation of the dot position in different layers gives rise
to tilted sheets indicated by dash–dotted lines. (d)–(f) Influence of �ð1;2Þz .
(g)–(i) Influence of �ð3Þx;y. (j)–(l) Influence of �ð3Þz . The symbols P1–P12
denote the sets of disorder parameters given in Table 1. The QDs are
assumed to be spherical.

Table 1
Sets of parameters (P1–P12) used for the simulations of the GISAXS
intensity maps.

The QD lattice is assumed to be rhombohedral with the basis vectors
að1Þ ¼ ða; 0; 0Þ, að2Þ ¼ ða=2; a31=2=2; 0Þ, að3Þ ¼ ða; a31=2=2; cÞ, the dot radius is R
= 2.0 nm, with the r.m.s. deviation �R = 0.45 nm (Gamma distribution was
used), the number of layers is N1 ¼ N2 ¼ N3 ¼ 50. All values are in nm.

Parameters a c �ð1;2Þx;y �ð1;2Þz �ð3Þx;y �ð3Þz

P1 10.0 10.0 1.5 1.0 1.0 1.0
P2 10.0 10.0 2.0 1.0 1.0 1.0
P3 10.0 10.0 2.5 1.0 1.0 1.0
P4 10.0 10.0 1.0 1.5 1.0 1.0
P5 10.0 10.0 1.0 2.0 1.0 1.0
P6 10.0 10.0 1.0 2.5 1.0 1.0
P7 10.0 10.0 2.5 1.0 1.5 1.0
P8 10.0 10.0 2.5 1.0 2.0 1.0
P9 10.0 10.0 2.5 1.0 2.5 1.0
P10 10.0 10.0 2.5 1.0 1.0 1.2
P11 10.0 10.0 2.5 1.0 1.0 1.4
P12 10.0 10.0 2.5 1.0 1.0 1.6



be distinguished in the GISAXS simulations shown in Fig. 8.

The first type are the sheets (streaks) placed parallel to the Qz

axis. These sheets are the consequence of the correlation of

the QD positions within the plane parallel to the substrate (in-

plane correlation). They become broader and weaker with

increasing jQyj, and their FWHMs also increase with growing

in-plane components of the in-plane disorder, i.e. with

increasing �ð1;2Þx;y . This is visible in Figs. 8(a), 8(b), 8(c). The

effect of the increase in the vertical component of the in-plane

disorder [�ð1;2Þz ] causes a decrease in intensity and a lateral

broadening of the sheets with an increase in Qz (see Figs. 8d,

8e, 8f).

The second type of sheets are the tilted ones. They appear

as a result of the correlation in the QD positions corre-

sponding to different layers. The influence of the increase in

the lateral [�ð3Þx;y] and vertical [�ð3Þz ] disorder on this type of

sheet is illustrated in Figs. 8(g), 8(h), 8(i) and 8(j), 8(k), 8(l),

respectively. The increase in the lateral disorder causes a

broadening and weakening of the correlation peaks in the jQyj

direction, while the increase in the vertical disorder broadens

the sheets along Qz. In summary, for model 1, in which all the

disorder components are described by SRO, all correla-

tion peaks broaden with the increase in the degree of

disorder.

The simulations shown in Fig. 8 are obtained for the

perpendicular geometry with no averaging of the azimu-

thal directions of að1;2Þ. As stated previously (see x3.3), this

case may be successfully used for systems where some

pre-defined direction of the basis vectors exists. But, for

systems with no pre-defined direction or with domains

randomly rotated around the normal to the surface, the

azimuthal averaging (over all rotations of basis vectors

around the z axis) should be performed (see Fig. 7). An

example showing simulation of the azimuthally averaged

intensity distribution (using the parameter set P8) is

shown in Fig. 9. The influences of the parameters on the

peak profiles follow the same rules as in the non-averaged

system (Fig. 8).

An example of the application of this model to self-

assembly of Ge quantum dots in continuous thick Al2O3

film is shown in the next section.

3.6. Example 1: self-assembly of Ge quantum dots in an
alumina matrix

Here we present an example showing the application of

model 1 for the description of Ge QD lattices produced by

magnetron sputtering deposition of a continuous Ge+Al2O3

layer at 773 K on a flat substrate. Owing to the elevated

deposition temperature QDs form during the layer growth.

The dots formed during the deposition affect the shape of the

growing surface, which incites a self-organization process

during the layer growth. The result of the deposition is the

formation of domains of QDs that are ordered in a three-

dimensional tetragonal lattice.

The formed dot lattice is schematically presented in Figs.

10(a), 10(b) while the experimentally measured STEM cross

section of the film is shown in Fig. 10(c). The domains are

randomly rotated with respect to the surface normal. More

details about the origins of self-assembly in this kind of film

are given in Buljan, Pinto et al. (2010). The nature of the

deposition process indicates that the ordering in all directions

can be described by the SRO model: the substrate used for the

deposition is isotropic and flat and it actually does not influ-

ence significantly the QD ordering. On the other hand, a single

continuous film is deposited, so there is also no reason for

a long-range ordering in a direction perpendicular to the

surface, which would be the case for a regular multilayer.

Experimentally measured and simulated GISAXS maps of

this sample are shown in Figs. 10(d) and 10(e), respectively.

The positions of the lateral maxima in the measured map do

not depend on the azimuthal direction of the primary X-ray

beam. This means that the regular ordering appears in

domains that are randomly azimuthally rotated. The same

follows from the STEM images of the film. Therefore, the

simulation of the experimentally measured map was

performed by averaging of equation (20) over all azimuthal

orientations of the basis vectors. The parameters used for the
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Figure 9
Simulation of two-dimensional GISAXS intensity map obtained using
model 1 and azimuthal averaging for the set P8 of the disorder
parameters. The intensity scale is the same as in Fig. 8.

Table 2
Sets of parameters obtained by fitting the experimentally measured GISAXS
intensity maps and determined from STEM cross sections for examples 1–3.

The basis vectors are given by að1Þ ¼ ða; 0; 0Þ, að2Þ ¼ ð0; a; 0Þ, að3Þ ¼ ða=2; a=2; cÞ for
example 1, and að1Þ ¼ ða; 0; 0Þ, að2Þ ¼ ða=2; a31=2=2; 0Þ, að3Þ ¼ ða; a31=2=2; cÞ for
examples 2 and 3. All values are given in nm except N1;N2 and N3, which show
the number of QDs along basis vectors að1;2;3Þ, respectively. The number in brackets
indicates the statistical error of the parameter.

Example 1 Example 2 Example 3

Parameter GISAXS STEM GISAXS STEM GISAXS STEM

a 8.6 (0.5) 9 (2) 21.4 (0.5) 21.0 (4) 12.3 (0.5) 12 (3)
c 6.9 (0.3) 7 (1) 14.0 (0.3) 14 (1) 12.8 (0.3) 12 (1)
RL 1.6 (0.1) 1.6 (0.5) 4.1 (0.1) 4.1 (0.5) 2.9 (0.1) 2.9 (0.5)
RV 3.6 (0.3) 3.6 (0.5) 4.1 (0.1) 4.1 (0.5) 2.9 (0.1) 2.9 (0.5)
�R 0.4 (0.1) 1.3 (0.3) 0.4 (0.1) 0.4
�LL 2.3 (0.2) 8.6 (0.4) 3.8 (0.2)
�LV 2.0 (0.2) 1.1 (0.2) 0.2 (0.1)
�VL 0.9 (0.1) 8.0 (0.2) 3.3 (0.2)
�VV 1.5 (0.3) 2.6 (0.2) 0.8 (0.1)
N1 60 (20) 60 (20) 60 (20)
N2 60 (20) 60 60 (20)
N3 20 (0) 20 (0) 20 (0) 20 (0) 20 (0) 20 (0)



simulation are given in Table 2. In the fitting procedure of the

GISAXS data we assumed that some components of the r.m.s.

deviations �ðjÞx;y;z are equal because of the sample symmetry, i.e.

�ð1Þx ¼ �
ð1Þ
y ¼ �

ð2Þ
x ¼ �

ð2Þ
y 	 �LL;

�ð1Þz ¼ �
ð2Þ
z 	 �LV;

�ð3Þx ¼ �
ð3Þ
y 	 �VL;

�ð3Þz 	 �VV: ð26Þ

The indexes L and V in equation (26) are used to describe

disorder of the longitudinal (parallel to the substrate) and

vertical (perpendicular to the substrate) components of the

basis vectors, respectively. The first index refers to the basis

vector described, and the second one to the deviation vector.

Thus, �LV describes the vertical deviation of the in-plane basis

vectors a(1) and a(2). Model 1 is valid for this sample, since the

parameters obtained are in good agreement with those from

STEM, which are also given in Table 2.

3.7. Model 2

Model 2 describes a three-dimensional QD array where the

QDs are ordered according to the long-range-order model

along the basis vector að3Þ, and the short-range ordering occurs

in the other directions. This model is suitable for the

description of QDs arranged in a multilayer, where the long-

range ordering along a3 is induced by a process defining

‘ideal’, i.e. non-disturbed, positions of the dots. Such a

process may be ion beam irradiation of a multilayer (Buljan,

Bogdanović-Radović et al., 2010, 2011), or regular patterning

of the substrate in one direction. In Buljan, Bogdanović-

Radović et al. (2010) we have shown the ordering of the

positions of Ge quantum dots in a (Ge+SiO2)/SiO2 multilayer

achieved by a post-growth irradiation of a multilayer by ion

beam. The points where the tracks of individual ions cross the

Ge-rich layers represent the ideal positions of the Ge quantum

dots. Therefore, the position of the n ¼ ðn1; n2; n3Þ-th dot can

be expressed by equation (15), where

DðjÞnj
¼
Pnj

m¼1

dðjÞm ; j ¼ 1; 2 ð27Þ

are the random lateral displacements of the dots obeying the

SRO model, and the random displacements Dð3Þn3
are defined

with respect to the ‘ideal’ positions n3að3Þ. In the multilayer

sample mentioned above, the vertical component að3Þz equals

the multilayer period and the direction of the basis vector að3Þ

is defined by the direction of the irradiating ions.

In this case, the correlation function equals a product of two

one-dimensional SRO correlation functions and one one-

dimensional LRO correlation function,

G3DðqÞ ¼ G
ð1Þ
1D;SROðqÞG

ð2Þ
1D;SROðqÞG

ð3Þ
1D;LROðqÞ: ð28Þ

Functions G
ð1;2Þ
1D;SRO are given by equation (7), G

ð3Þ
1D;LRO is the

one-dimensional correlation function of the LRO model

including absorption [see also equation (12)],
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Figure 10
Schematic views of the Ge QD lattice formed in a continuous Ge+Al2O3

layer by a self-assembly process. The lattice is described by basis vectors
að1;2;3Þ; (a) and (b) depict the plane parallel and perpendicular to the
surface, respectively. (c) STEM image of the film cross section. The
surface is parallel to the bottom edge of the image. (d) Experimentally
measured and (e) simulated GISAXS maps. The parameters of the
simulations are given in Table 2.

Figure 11
Simulations of GISAXS intensity distribution maps obtained from QD
lattices described by model 2. The simulations show the dependence of
the intensity distribution on the degree of disorder. (a)–(c) Influence of
�ð1;2Þx;y . (d)–( f ) Influence of �ð1;2Þz . (g)–(i) Influence of �ð3Þx;y. ( j)–(l) Influence
of �ð3Þz . The sets of the disorder and QD lattice parameters are denoted by
P1–P12 and given in Table 1. The QDs are assumed to be spherical.



G
ð3Þ
1D;LROðqÞ ¼ �þ ½�ð3Þ�22Re

�
1

�ð3Þ
�
� 1

�
��
½�ð3Þ�N3 � 1

�ð3Þ � 1

��
:

ð29Þ

Fig. 11 shows simulated GISAXS maps obtained for the same

sets of the disorder parameters P1–P12 as in model 1.

The properties of the lateral correlation sheets (stemming

from the in-plane correlations) are the same as those for

model 1: the sheets broaden in the jQyj direction with the

increase in �ð1;2Þx;y and along Qz with �ð1;2Þz . However, the

properties of the correlation sheets coming from the ordering

along að3Þ are different from those shown for model 1. The

most important feature is the width of these sheets, which is

constant in the direction perpendicular to the direction of að3Þ.

The increase in the disorder parameters �ð3Þx;y and �ð3Þz causes a

decrease in their intensities in the directions of Qy and Qz,

respectively, but the widths remain constant. This feature is a

consequence of the LRO model assumed along að3Þ.

However, the width of the sheets increases with decreasing

N3. This effect is illustrated in Fig. 12.

Azimuthal averaging for all three basis vectors in the

systems described by model 2 (see Fig. 13a) is not common,

since the LRO model assumes the existence of a pre-defined

direction (given by the basis vector a3, in our case). However,

within this model, the azimuthal averaging can be carried out

with respect to the basis vectors að1;2Þ only. Therefore, the QDs

make LRO-ordered chains along að3Þ, but the ordering of the

chains in the plane parallel to the substrate should be aver-

aged over all azimuthal orientations of að1;2Þ. This case is shown

in Fig. 13(b). The lateral sheets parallel to the Qz axis, visible

in Fig. 13, are the consequence of the in-plane correlations of

the QD positions. The width of these sheets is slightly broader

when compared with the non-averaged case (see Fig. 11h).

This is expected because we ‘see’ different projections of basis

vectors að1;2Þ due to the azimuthal averaging.

The application of model 2 to the analysis of GISAXS maps

experimentally measured on the ordered QD array produced

by ion beam irradiation is given in the next section.

3.8. Example 2: quantum dot lattices formed by ion beam
irradiation

An example of a QD arrangement that can be described by

model 2 is a (Ge+SiO2)/SiO2 multilayer irradiated by oxygen

ions and subsequently annealed. Owing to the ion beam

irradiation, QDs are formed along the traces of individual ions

(Buljan, Bogdanović-Radović et al., 2009, 2010, 2011). We

choose the basis vector að3Þ to be directed along the traces. The

positions of the traces in the lateral xy plane can be described

by the SRO model and for the description of the lateral

positions of the traces we use the basis vectors að1;2Þ. The total
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Figure 13
Simulations of two-dimensional GISAXS intensity maps obtained with
model 2 and azimuthal averaging for the set of disorder parameters P8.
(a) The azimuthal directions of all vectors að1;2;3Þ are included in the
azimuthal averaging; (b) only the azimuthal directions of the vectors
að1;2Þ are averaged, the direction of að3Þ is fixed. Perpendicular geometry is
shown in (b). The intensity scale is the same as in Fig. 11.

Figure 12
Simulations of two-dimensional GISAXS intensity maps obtained using
model 2 with various values of N3 indicated in the figure, and the set of
disorder parameters P8 given in Table 1. The intensity scale is the same as
in Fig. 11.

Figure 14
(a), (b) Schematic views of the structure of the QD lattice formed by ion
beam irradiation of a (Ge+SiO2)/SiO2 multilayer followed by annealing.
The QD lattice is described by the basis vectors að1;2;3Þ, blue dashed arrows
indicate the irradiation direction. (c) STEM cross section of the film. (d),
(e) GISAXS maps measured on the same film parallel and perpendicular
to the irradiation plane, respectively. ( f ), (g) GISAXS simulations
obtained using model 2, corresponding to the measured maps in panels
(d), (e).



intensity is obtained after azimuthal averaging of the basis

vectors að1;2Þ, while the third basis vector að3Þ is kept fixed. The

schematical view of the QD arrangement is shown in Figs.

14(a), 14(b), while the STEM image of the film cross section is

shown in Fig. 14(c). The GISAXS maps of the same system

measured in parallel ðkÞ and perpendicular ð?Þ geometries are

shown in Figs. 14(d) and 14(e), respectively.

In the perpendicular configuration, the sheets stemming

from the ordering along að3Þ are perpendicular to að3Þ, i.e. they

are tilted; the tilt angle with respect to the surface normal

equals the angle of að3Þ with the surface. In the parallel

configuration, the sheets are parallel to Qy.

The simulations of the measured GISAXS maps are shown

in Figs. 14( f), 14(g). The simulations are performed using the

azimuthal averaging of the basis vectors að1;2Þ (see Fig. 13b).

We have fitted the model parameters to the experimentally

measured GISAXS maps. The resulting parameters are in very

good agreement with those obtained from the STEM image

(see the numerical values in Table 2).

3.9. Model 3

Model 3 is designed for the description of QD arrays where

QDs are long-range ordered along a direction different from

the direction of any basis vector (say in the z direction), while

the ordering in all other directions obeys the SRO model.

Thus, the arrangement along the basis vectors is of a ‘mixed’

nature – the lateral components of the random displacements

D
ð1�3Þ
k obey the SRO model, while the vertical components

Dð1�3Þ
z are arranged according to the LRO model. Model 3 is

applicable if the dots occur in a multilayer, where the vertical

periodicity of the multilayer imposes the ‘ideal’ vertical

components of the dot position vectors. The position vector of

a dot with indexes n1;2;3 is therefore

Rn ¼ n1að1Þ þ n2að2Þ þ n3að3Þ

þ
Pn1

m¼1

d
ð1Þ
km þ �

ð1Þ
zm þ

Pn2

m¼1

d
ð2Þ
km þ �

ð2Þ
zm þ

Pn3

m¼1

d
ð3Þ
km þ �

ð3Þ
zm: ð30Þ

The correlation function for this model is

G3DðqÞ ¼ G
ð1Þ
1D;MIXðqÞG

ð2Þ
1D;MIXðqÞG

ð3Þ
1D;MIXðqÞ; ð31Þ

where G
ð1;2Þ
1D;MIXðqÞ are given by

G
ðjÞ
1D;MIXðqÞ ¼ Nj þ ½�

ðjÞ
z �

22Re

�
�ðjÞ�ðjÞk

1� �ðjÞ�ðjÞk
Nj �
½�ðjÞ�j

k�
Nj � 1

�ðjÞ�ðjÞk � 1

( ) !
; j ¼ 1; 2;

ð32Þ

and

G
ð3Þ
1D;MIXðqÞ ¼ �þ ½�ð3Þz �

22Re

�
�ð3Þk

�ð3Þ
�
� �ð3Þk

��
½�ð3Þ�ð3Þk �

N3 � 1

�ð3Þ�ð3Þk � 1

( ) !
:

ð33Þ

Here we have denoted �ðjÞk ¼ �
ðjÞ
x �
ðjÞ
y .

The simulations of the GISAXS maps for various disorder

degrees are shown in Fig. 15. The behaviour of the sheets

caused by the in-plane ordering is the same as in models 1 and

2. However, the width of the sheets corresponding to the

correlation of the positions in different layers is different. In

accordance with the ‘mixed’ nature of the correlation function

[equation (33)], the width of the streaks increases along Qy.

However the width in the Qz direction is constant, but the

intensity decreases if the disorder parameter �ð3Þz increases.

However, if �ð3Þz is sufficiently small, models 1 and 3 yield very

similar results.

The influence of the azimuthal averaging on the results of

model 3 is shown in Fig. 16. Similarly to model 1, azimuthal

averaging makes the GISAXS intensity distribution sym-

metric with respect to the Qy = 0 axis. Also, it is not sensitive to

the azimuthal orientation of the probing beam with respect to

the sample. This is expected due to averaging over all possible

azimuthal orientations. The peaks visible in Fig. 16 are broader

than for the non-averaged case (Fig. 15).

An example showing the application of this model to a QD

lattice produced by self-ordered growth on a flat substrate is

given in the next section.
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Figure 15
Simulations of the GISAXS intensity maps with model 3; the results in
the ? geometry are shown. The simulations show the dependence of the
intensity distribution on the degree of disorder. (a)–(c) Influence of �ð1;2Þx;y .
(d)–( f ) Influence of �ð1;2Þz . (g)–(i) Influence of �ð3Þx;y. ( j)–(l) Influence of �ð3Þz .
As in the previous GISAXS maps, the symbols P1–P12 denote the
parameter sets in Table 1.



3.10. Example 3: quantum dot lattices formed by self-
assembly on a flat substrate

Here we show the application of model 3 for the simulation

of the GISAXS maps of QD lattices formed by self-assembled

growth of Ge QDs in an amorphous SiO2 matrix. The samples

are produced by magnetron sputtering of 20 (Ge+SiO2)/SiO2

bilayers on a flat Si(111) substrate (Buljan, Desnica et al.,

2009b). The multilayer is periodic, i.e. the vertical distances of

the QDs follow the long-range-ordering model. The deposi-

tion was performed at an elevated substrate temperature

making possible the self-assembly of the dots. The resulting

lattices of quantum dots have a rhombohedral face-centred-

cubic-like structure. The ordered regions appear in domains

randomly rotated around the surface normal. The arrange-

ment of the QDs in a domain is schematically shown in Figs.

17(a), 17(b), while the STEM measurement of the film cross

section is shown in Fig. 17(c). The measured GISAXS inten-

sity distribution is shown in Fig. 17(d). The intensity distri-

butions are not sensitive to the azimuthal direction of the

X-ray probing beam (see Fig. 7).

The analysis of the measured maps is performed using

model 3. Additionally we have performed an azimuthal

averaging of the calculated intensity, to include the effect of

randomly oriented domains. The parameters of the QD

lattices and sizes of the QDs, obtained by fitting of the

measured GISAXS maps to the theoretical maps, are shown in

Table 2. Examples of measured and simulated GISAXS maps,

using the parameters obtained by the fit, are shown in Figs.

17(d) and 17(e), respectively.

Model 3 has also been successfully applied to the descrip-

tion of the ordering of Ge quantum dots deposited on rippled

Si substrates (Buljan, Grenzer, Keller et al., 2010), SiGe

multilayers (Pinto et al., 2011) and ordering of Ge QDs in an

Al2O3 matrix (Buljan, Radić et al., 2011).

4. Discussion, limitations, surface and interface effects

In the previous sections we have developed models for the

description of GISAXS intensity distributions for the various

types of QD lattices. We have applied these models for the

analysis of a variety of experimentally realized systems and

we have shown that the obtained structural parameters are

in very good agreement with the STEM results. Here we

compare different models and consider several points that

should be taken into account in the analysis of measured

GISAXS maps.

A comparison of GISAXS intensity distributions for

various models developed above is shown in Fig. 18. From the

figure it is evident that the same set of parameters yields

different GISAXS intensity distributions for different models.

Therefore, for a proper description of the system and analysis

of GISAXS data, it is very important to choose the correct

model type. If the model is incorrectly chosen, the parameters

obtained by the fit can lead to non-realistic parameters or

the fitting process cannot simulate well the experimentally

measured spectra. This problem can be avoided if the prop-

erties of the growth procedure of the QD lattice are known.

Then, LRO or SRO can be expected along a particular spatial

direction. For example, if a periodic multilayer is deposited

and the deposition process is precisely controlled, so the same

conditions are valid for each layer of a multilayer, the LRO

is expected in the growth direction. However, if a similar

multilayer is deposited, but the deposition conditions are not

precisely controlled for each layer, then the expected ordering

will be SRO. Of course, the processes like self-assembly

usually yield SRO of the QDs, while regular (LRO) surface

patterning yields LRO of the QDs (Holý et al., 2009).

If the type of QD ordering cannot be estimated based on

the deposition procedure, then the properties of the correla-

tion peaks stemming from LRO or SRO should be considered.

The most important difference between LRO and SRO is the

width of the correlation peaks, which increases with the peak

order for SRO, while it is constant for LRO (for the one-
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Figure 17
(a), (b) Schematic views of the QD arrangement in the QD lattice formed
during self-assembled growth of a (Ge+SiO2)/SiO2 multilayer. The lattice
formed has a three-dimensional rhombohedral structure with the ½111�
axis perpendicular to the sample surface. It is described by basis vectors
að1;2;3Þ. (c) STEM image showing ordering within a small domain. (d), (e)
Measured and simulated GISAXS maps, respectively. The parameters of
simulation are given in Table 2.

Figure 16
Simulated GISAXS intensity map from the QD lattices described by
model 3 after azimuthal averaging. The set P8 of the disorder parameters
is used. The intensity scale is the same as in Fig. 15.



dimensional case). The type of ordering is then determined

based on the properties of correlation peaks.

There are also several other points that should be taken into

account, which relate to possible limitations of the model. The

first one has already been mentioned earlier in this paper,

and it concerns the description of two-dimensional or three-

dimensional SRO systems. The commonly applied ideal

paracrystal model imposes the existence of preferred orien-

tations that usually do not exist in real systems. We have

shown that this problem can be overcome by averaging over

different azimuthal orientations of the lattice.

The second problem is the effect of the overall shape of the

QD lattice for which the simulation is performed. The QD

lattice is described by basis vectors að1;2;3Þ and in the simulation

we assumed given numbers N1;2;3 of the unit cells along the

basis vectors. Therefore, the dot lattice domain has the shape

of a parallelepiped with given directions of the edges. This

rather non-physical shape of the lattice domain affects the

GISAXS intensity distribution, but this effect is significant

only in the very close vicinity of the origin of reciprocal space.

Thus, the simulated GISAXS intensity is not correct only for

very small values of Q. This is easily visible in the experimental

examples shown above – the most significant differences

between the experimental data and simulations appear only

in the vicinity of the specular plane and for very small values

of Qz.

The third effect which should be considered is the rough-

ness of the surface and interfaces in the modelled system.

However, the reciprocal-space distribution scattered from the

surface and/or interface roughness is usually concentrated in a

relative stripe parallel to the Qz axis. This is demonstrated in

Fig. 19, which shows the GISAXS map measured on a rough

surface of a multilayer without quantum dots. The width of the

intensity stripe along Qy is approximately 2�=�L, where �L is

the lateral correlation length of the interface roughness (see

Pietsch et al., 2004). Therefore, if this correlation length is

larger than the mean separation of the dots, the contribution

of the roughness can easily be distinguished. If �L is compar-

able to the dot separation, the problem is more complicated

and a detailed comparison of the experimental GISAXS data

with simulations (including the roughness effect) must be

performed.

The surface and interface effets are well known, so we will

not consider them here (see Pietsch et al., 2004).

5. Conclusion

We have developed theoretical models for the description of

GISAXS intensity distributions from various types of three-

dimensional QD lattices. The lattice types differ in the type of

QD ordering and in the degree of disorder. The models are

supported with experimental examples showing applications

of the models to real systems. The structural parameters

obtained from the GISAXS analysis using the developed

models are in excellent agreement with the parameters

obtained by microscopic measurement. The developed models

can be applied to a wide variety of QD systems and they

enable precise determination of QD lattice type, its para-

meters, disorder type and degree of disorder, as well as QD

size and size distribution parameters.
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20, 085612.
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235407.
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