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The first attempts at measuring the optical properties of X-rays such as

refraction, reflection and diffraction are described. The main ideas forming the

basis of Ewald’s thesis in 1912 are then summarized. The first extension of

Ewald’s thesis to the X-ray case is the introduction of the reciprocal lattice. In

the next step, the principles of the three versions of the dynamical theory of

diffraction, by Darwin, Ewald and Laue, are given. It is shown how the

comparison of the dynamical and geometrical theories of diffraction led Darwin

to propose his extinction theory. The main optical properties of X-ray wavefields

at the Bragg incidence are then reviewed: Pendellösung, shift of the Bragg peak,

fine structure of Kossel lines, standing waves, anomalous absorption, paths of

wavefields inside the crystal, Borrmann fan and double refraction. Lastly, some

of the modern applications of the dynamical theory are briefly outlined: X-ray

topography, location of adsorbed atoms at crystal surfaces, optical devices for

synchrotron radiation and X-ray interferometry.

1. X-rays as a branch of optics

[Laue’s] discovery was primarily a contribution to optics.

(Sir C. W. Raman, 1937)

The title of this section is borrowed from that of A. H.

Compton’s Nobel lecture on 12 December 1927, in which he

reviewed the main optical properties of X-rays studied at the

time. Today, the applications of X-ray optics are widespread,

ranging from radiography and lithography to X-ray high-

resolution imaging with synchrotron radiation and refractive

and diffractive X-ray lenses, but the nature of X-rays was

not immediately recognized. In his first communication to

the Würzburg Physikalisch-medicinische Gesellschaft, W. C.

Röntgen (1895) suggested ‘a kind of relationship between the

new rays and light’ and wondered whether they were not

longitudinal waves in the ether. In 1896, the impulse theory

was put forward independently by E. Wiechert (1896), who

assumed that Röntgen rays were impulses of electrodynamic

waves of very high frequency, and by Sir G. G. Stokes (1896),

who proposed that they were pulses of very short wavelength

propagating in the ether. The same suggestion was made by

J. J. Thomson (1898). Many experimenters tried to observe the

optical properties of X-rays:

Refraction. The first thing Röntgen did after ascertaining

that the rays penetrate matter and propagate in straight lines

was to look for their eventual refraction through a prism. For

this, he used prisms of water between mica sheets, of alumi-

nium and of rubber, but unsuccessfully (Röntgen, 1895). As

soon as the news of his discovery was known, in early January

1896, many scientists started looking for the properties of the

new waves. One was the future Nobel Prize winner, J. Perrin

(1896, 27 January). Their attempts at observing refraction

of X-rays directly remained unsuccessful for a long time,

including those by another future Nobel prize winner, C. G.

Barkla (1916), until the first successful observation, by A.

Larsson, M. Siegbahn and I. Waller (Larsson et al., 1924, 1925)

with a glass prism, using a photographic method to observe the

deviation of the X-ray beam. It was next observed by B. Davis

and C. M. Slack (Davis & Slack, 1925) with a prism of copper

and an ionization chamber and by the same authors with a

prism of aluminium inserted in the path of the X-ray beam

between the two calcite crystals of a double-crystal spectro-

meter (Davis & Slack, 1926). More sensitive versions of the

latter experiment were developed much later, when highly

perfect crystals became available, for instance by Okkerse

(1963) and by Malgrange, Velu and Authier (Malgrange et al.,

1968). Entirely new possibilities have been offered by the

X-ray interferometer (Bonse & Hart, 1965); see x5.8.

Another way to detect the refraction of X-rays is through

the shift it induces in the Bragg peaks, as will be discussed

in x4.

Specular reflection. Many scientists, starting with Röntgen

himself (1896), looked for specular reflection of the new rays,

but to no avail. The first to observe it was A. H. Compton

(1922, 1923a), followed by Siegbahn & Lundquist (1923,

quoted by Larsson et al., 1925) and others.
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Diffraction by a slit. After several unsuccessful attempts, in

particular by Röntgen (1898), the first, rather uncertain,

results were obtained by H. Haga and C. H. Wind (Haga &

Wind, 1899, 1902), who observed the broadening of the image

of a slit due to diffraction. Their slit was wedge-shaped, with a

width 2 to 14 mm, and the exposure time ranged from 30 to

200 h. They made a rough estimate of the X-ray wavelength

from the broadening they observed, using ordinary diffraction

theory, but the result varied depending on the position of the

diffracting slit and on the conditions of the experiment. They

arrived at values of the wavelength of the order of 0.13 Å. A.

Sommerfeld (1900) recalculated it by considering the diffrac-

tion of a single impulse by a slit, and obtained a value of

1.35 Å.

B. Walter and R. Pohl (Walter & Pohl, 1908) were sharply

critical of Haga and Wind’s experiments; they didn’t believe

they showed any evidence of diffraction and asserted that

their wavelength estimations were invalid. They repeated

Haga and Wind’s experiment with a perfected setup (Walter &

Pohl, 1909) and came to the conclusion that there was no

observable diffraction and that if the wave nature of X-rays

was proved by other means, their wavelength should be

smaller than 0.12 Å. Their photographs were nevertheless

analyzed again very carefully by P. Koch (1912), at Sommer-

feld’s request, with an accurate optical microphotometer.

From the broadening of the image of the slit, Sommerfeld

(1912) recalculated the width of the X-ray impulses (or

wavelength) to be 0.4 Å. The paper was submitted 1 March

1912!

Polarization. The first major discovery concerning the

optical properties of X-rays is due to Barkla (1905), who

discovered that the secondary X-rays are polarized. According

to J. J. Thomson’s theory, the succession of ‘thin’ and

very intense electromagnetic pulses induces an acceleration

of the motion of the electrons in the medium, which emit

a secondary radiation (Thomson, 1903). This radiation is

more intense in the direction perpendicular to the movement

of the electron and vanishes in the direction parallel to it.

The secondary beam is therefore expected to be plane

polarized, and this can be observed by a variation with

direction of the intensity of a tertiary beam. In Barkla’s

first experiment with gases, the tertiary beam was too

weak to allow accurate measurement, but consideration of

the method of production of the primary beam led him to

think that the primary beam was partially polarized in a

direction perpendicular to that of the propagation of the

cathode rays (electrons). By analysis with an electroscope of

the variation of intensity of the secondary radiation from

that primary beam, Barkla could prove the polarization of

the X-rays. He repeated the experiment with metals, and in

that case the tertiary radiation was strong enough to be

analyzed and to prove the polarization of the secondary rays

(Barkla, 1906). Barkla’s experiments clearly proved the

transverse character of the X-ray pulses. Following Barkla’s

work in England, polarization was also the topic of a thesis in

Munich, Germany, by one of Röntgen’s students, E. Bassler

(1909).

Derivation of X-ray wavelengths from the consideration of

light quanta. Wien (1907) generalized Planck’s radiation

theory to X-rays. When cathode rays accelerated through a

potential V are absorbed in the anode, the maximum energy

they may transfer to the X-ray light quantum is

eV ¼ ð1=2Þmv2
¼ hc=�;

where e is the charge of the electron, m is its mass, v is its

velocity, c is the velocity of light and hc=� is the energy

associated to a light quantum of X-rays according to Planck’s

theory. Wien was in that way able to estimate the X-ray

wavelength to be about 0.675 Å.

Quite independently, J. Stark (1907) reached a similar

result, 0.6 Å, with similar arguments, in a short paper dedi-

cated to the quanta elements and positive and negative elec-

tricity.

Diffraction by a crystal grating. W. Friedrich and P. Knip-

ping’s famous experiment following M. Laue’s idea brought

about a spectacular and decisive proof of the wave nature of

X-rays (Friedrich et al., 1912). The history of the discovery and

its context are recalled with many unpublished details by

Eckert (2012). It is also briefly reviewed in Kubbinga (2012). It

is described in many writings, in particular by its main actors,

Laue (1952b) and Ewald (1962); see also Hildebrandt (1993)

and Authier (2012).

The absence of any refraction or specular reflection was a

source of difficulties for the holders of the electromagnetic

hypothesis. This had been immediately obvious to Stokes

(1897), who assumed, as a possible explanation, that this was

due to the fact that the new rays were ‘an irregular repetition

of isolated and independent disturbances’. For this reason, and

because of the ionization properties of X-rays, similar to those

of �- and �-rays, W. H. Bragg (1907) introduced a corpuscular

hypothesis for the nature of X-rays, in the form of neutral

pairs, rather than ether pulses. This led to a heated debate

between him and Barkla. His first reaction to the Munich

discovery was reserved (W. H. Bragg, 1912a, 24 October), and

it is only after his son Lawrence’s derivation of Bragg’s law, in

November 1912 (W. L. Bragg, 1913), that he came round

reluctantly (W. H. Bragg, 1912b, 28 November). He never-

theless insisted that ‘the properties of X-rays point clearly to a

quasi-corpuscular theory.’ ‘The problem,’ he added, ‘is not to

decide between the two theories, but to find one theory which

possesses the capacities of both.’ It is only after the discovery

of the Compton effect (Compton, 1923b) and the formulation

by L. de Broglie of the relations between the properties of

light and those of the atom that the dual nature, corpuscular

and wave, of X-rays was really understood. For a historical

perspective of the wave–corpuscle dualism, the reader may

consult Wheaton (1983).

2. Ewald’s thesis

P. P. Ewald was born on 23 January 1888 in Berlin (Fig. 1). He

began his higher education with a one-year stay in Cambridge,

UK, in 1905. From there, he went to Göttingen, where he

studied mathematics under D. Hilbert, and then to Munich to
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follow A. Pringsheim’s lectures. It is somewhat by chance

that he attended A. Sommerfeld’s hydrodynamics course. He

was immediately attracted to the ‘interplay between the

mathematical formalism and the physical arguments’ which

was so vividly described by Sommerfeld and from then on

‘his heart was set on Mathematical Physics’ (Ewald, 1968).

He started his thesis in 1910, submitted it on 16 February

1912 and defended it on 5 March of that year (Ewald, 1912). It

was, however, only published four years later (Ewald,

1916a,b).

The topic he chose among the ten or twelve proposed by

Sommerfeld was ‘to find the optical properties of an aniso-

tropic arrangement of isotropic resonators’ (Ewald, 1962).

One of the motives was to find whether a physical property

could be directly related to the regular arrangement of space

lattices. The starting point of Ewald’s work was the study of M.

Planck’s and H. A. Lorentz’s theories of dispersion; but these

authors had considered amorphous media in which the dipoles

are randomly distributed. Sommerfeld’s idea had been to find

whether the regular arrangement of the dipoles in a crystal

would be at the origin of new dispersive and refractive

properties (Ewald, 1962).

Ewald divided the problem into two parts, the first one

about the propagation of waves in an infinite triply periodic

assembly of dipoles, the second one about the reflection or

refraction of an incident wave by a semi-infinite medium. In

the first part (theory of dispersion), he considered the field

generated by the dipoles when excited by a plane wave of

frequency � and unknown velocity (Ewald, 1916a). Each

dipole is set in oscillation by that incoming field and emits a

spherical wave. This wave, which Ewald calls a ‘wavelet’,

propagates with the velocity of light, c ¼ �=k (k ¼ 1=�,

wavenumber in vacuum), and contributes to the excitation of

the other dipoles. The total wave propagating inside the

crystal is the resultant of all these wavelets: it is what Ewald

calls ‘the optical field’. The balance between this optical field

and the oscillations of the dipoles was called a dynamical

balance by Ewald (1979). Owing to this interaction with the

dipoles, the phase velocity, v, of the resultant field differs from

c. There appears therefore a refractive index, which is, as

shown by Fresnel, the ratio of the velocities in the medium and

in vacuum, n ¼ c=v ¼ K=k (K ¼ n=�, wavenumber in the

medium). The problem is therefore to find all possible values

of n; the relation between the wavelength and the frequency is

called the dispersion equation. The calculation of the total field

involved the transformation of the sum of the contributions of

all the dipoles into a sum of plane waves, of wavevectors K.

That was very complicated at a time when Fourier transforms

were not in use, and Ewald performed the integrations by the

method of residues. A summary using Fourier transforms can

be found, for instance, in Authier (2001).

In the second part (theory of refraction and reflection),

Ewald (1916b) introduced the boundaries of the crystal and

an incident wave. By a formal truncation to a half-space of

the lattice sum of the radiating dipoles, he proved that

the progressive wave which excites the dipoles in the crystal

may be expressed as the sum of two terms, one propagating

with velocity c and which cancels out exactly the incident wave

and another one which satisfies the wave equation for

propagation with velocity c=n. This is the so-called Ewald–

Oseen extinction theorem (Bullough & Hynne, 1992), which

was also proved by Oseen in 1915 for isotropic media. The

idea was entirely new at the time and since Ewald wasn’t

absolutely sure of himself, he preferred to seek advice from

Laue; that was in late January 1912 (Ewald, 1962). This is the

famous question which led Laue to ask whether Ewald’s

theory would be valid for short wavelengths, and what was the

order of magnitude of the distances between neighbouring

dipoles. This was at the origin of Laue’s portentous intuition.

Laue, who had been asked by Sommerfeld to write an article

on diffraction by gratings for the encyclopedia of mathema-

tical sciences he was editing, immediately got the idea of the

diffraction of X-rays by a crystal grating. That article was only

published later and included a chapter on X-ray diffraction

(Laue, 1915).

Ewald was successful in showing that his model fulfilled the

laws of optics. He tested it, at P. Groth’s suggestion, on an

orthorhombic crystal, anhydrite (CaSO4). He could prove that

birefringence was qualitatively predicted by his model, but the

quantitative agreement was poor, owing in part to the fact that

the structure of anhydrite it was based on was not correct; he

had used a P Bravais lattice while anhydrite has in fact an A

lattice. This result did nevertheless confirm that the space-

lattice hypothesis of crystals was highly probable.

3. The dynamical theory of diffraction

In the calculation by Laue (1912) of the intensity of the

diffraction spots, the interaction between the diffracted

waves and the medium is neglected; the amplitudes scattered

by a three-dimensional array of scatterers are added as

if the amplitude of the incident wave was the same for

all the diffracting centers. This is the so-called kinematical

or geometrical theory of diffraction. For an infinite thickness

Laue centennial
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of the diffracting medium, the diffracted intensity would

tend towards infinity, which would violate the conservation

of energy. It is only an acceptable approximation if the

volume of the diffracting body is small, and because the

diffracting amplitude of each scatterer is very small. The

same approximation was made in the first of the two

papers by C. G. Darwin (1914a). Following Lawrence Bragg’s

explanation of the diffraction mechanism by the interference

of the waves reflected by a succession of equidistant

planes (W. L. Bragg, 1913), Darwin added the amplitudes of

the waves, simply taking their phase relationships into

account.

What differentiates the dynamical theory is that it takes

these interactions into account, as is done in any dispersion

theory. The expression dynamical theory of diffraction was

used for the first time by G. G. Stokes (1849), who treated the

luminiferous ether as an elastic solid. He considered the

diffraction of a wave by a slit and described as ‘dynamical’

the superposition of the secondary wavelets into which it is

broken up according to Huygens’ principle. It was used by

Ewald in his thesis (Ewald, 1912) and was then extended to his

theory of X-ray diffraction.

There are three forms of the dynamical theory of

diffraction, by Darwin (1914b), by Ewald (1917, 1937), and

by Laue (1931a, 1960). The roots of Ewald’s theory lie

in his thesis, but Laue (1931b) acknowledged Darwin’s

priority. The first extension to X-rays of his thesis was,

however, made by Ewald as soon as he heard the news

of the discovery of X-ray diffraction. This was during a

seminar given in mid-June 1912 by Sommerfeld to the

Physikalische Gesellschaft, in Göttingen, where Ewald was

now physics assistant to D. Hilbert. It was at that time that

the reciprocal lattice and the ‘Ewald construction’ were

introduced, but the corresponding article was only published

in 1913.

3.1. Ewald’s 1913 paper and the reciprocal lattice

In his thesis, Ewald had described the optical field by the

Hertz potential and showed that it can be expressed as a sum

of plane waves. If one assumes the refractive index to be

exactly 1, it is proportional to, using modern notation,

X

h

exp �2�iKh � rð Þ

K2
h � k2

ð1Þ

with k ¼ 1=�. Its wavevectors, Kh, are related to one another

by

Kh ¼ Ko � h; ð2Þ

where Ko is a particular wavevector,

h ¼ h
a

a2
þ k

b

b2
þ l

c

c2

and a, b, c define an orthorhombic lattice. Ewald called the

lattice defined by the vectors a=a2, b=b2, c=c2 the reciprocal

lattice (reziprokes Gitter). He distinguished two cases: (1) the

optical case, where k ¼ 1=� is much smaller than the unit

vectors of the reciprocal lattice and one term only in the sum

(1) has a non-negligible amplitude; and (2) the X-ray case,

where several terms may have a non-negligible amplitude,

those corresponding to the resonances, for which Kh is not

very different from k. Ewald expressed this condition

geometrically by means of the construction that bears his

name: there are as many waves with a non-negligible ampli-

tude as there are reciprocal-lattice points close to the

diffraction sphere (Fig. 2). With the assumption that the

refractive index is equal to just 1, the condition is strictly

equivalent to Bragg’s law.

Ewald’s definition of the reciprocal lattice was only valid for

an orthorhombic lattice. It is Laue (1914) who generalized it to

any type of symmetry, making use of the definitions by J. W.

Gibbs (1881). At the time, Laue seems to have been unaware

of the ‘polar lattice’ introduced by A. Bravais (1850, 1851)

more than half a century before to facilitate crystallographic

calculations, and which is homothetic to the reciprocal lattice.

Laue (1960) acknowledged it later, however.

3.2. Darwin’s theory – 1914

C. G. Darwin, the grandson of the father of the theory of

evolution, Charles Darwin, was born on 18 December 1887 in

Cambridge, England (Fig. 3). He graduated from Trinity

College, Cambridge, in 1910, and immediately got a post-

graduate position as reader in Mathematical Physics,

Manchester Victoria University, with E. Rutherford. In 1912,

his interests shifted towards X-rays, and, together with H. G. J.

Moseley, another of Rutherford’s co-workers, he started

studying the reflected beam with an ionization chamber

(Moseley & Darwin, 1913a, 30 January). At about the same

time, W. H. Bragg (1913, 23 January) showed that the reflected

beams had the same ionization properties as the primary

beam. Moseley and Darwin chose the reflection setting, rather

than the transmission one as Laue had done, because W. L.

Bragg (1912, 12 December) had just before obtained intense
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reflection spots from a sheet of mica. They observed intense

reflections from crystals of gypsum and rock salt, and, at the

suggestion of the Braggs (Bragg & Bragg, 1913), interpreted

them as coming from the characteristic lines of the platinum

target of their X-ray tube (Moseley & Darwin, 1913b). They

made careful measurements of the positions and intensities of

these selective reflections. These studies led Moseley and

Darwin on different paths. The former went on to determine

the wavelengths of the characteristic lines of the elements and

to lay the bases of X-ray spectroscopy, to be stopped by his

untimely death in 1915 in the Dardanelles battlefield during

the First World War. The latter developed the theory of

diffraction.

3.2.1. Geometrical or kinematical theory of diffraction. In

the first of his two papers, Darwin (1914a) assumes that the

scattering by one atom does not affect that by others (the so-

called geometrical or kinematical approximation). He starts

by calculating the amplitude reflected by one plane of atoms,

using Fresnel zones. The complex reflection coefficient �iq

taking into account the phase shift associated with the scat-

tering is

�iq ¼ i
Nd

k sin �
f ð2�; kÞ; ð3Þ

where k ¼ 1=�, N is the number of atoms per unit volume of

the crystal, d is the distance between successive planes (Nd is

the number of atoms per unit area of the diffracting plane), � is

the glancing angle and f ð2�; kÞ is the scattering amplitude of a

single atom. Following J. J. Thomson (1903), and assuming the

atom can be reduced to a point, f ð2�; kÞ is proportional to

ne2=mc2, where n is the number of electrons of the atom, and

assuming one atom per unit cell. Actually, the scattering

amplitude depends on the electron distribution around the

atoms, a fact that was first recognized, independently, by W. H.

Bragg (1915) and A. H. Compton (1915). It must also take into

account all the atoms in the unit cell and

f ð2�; kÞ ¼ RFhkl;

where Fhkl is the structure factor, and R ¼ e2=mc2 is the so-

called classical radius of the electron.

In the next step, Darwin summed up the amplitudes

diffracted by the successive planes. The incident beam is in

practice a divergent beam and the total reflected intensity is

the result of an integration over the glancing angle (it is now

called the integrated intensity). For a small non-absorbing

crystal entirely bathed in the incident beam, and in the

reflection geometry, it is given by

Igeom ¼ Io

N2�3R2jFhklj
2

sin 2�

1þ cos2 �

2
expð�MÞ�v ¼ IoQ�v;

ð4Þ

where ð1þ cos2 �Þ=2 is the polarization factor, expð�MÞ is the

Debye factor taking thermal agitation into account (Debye,

1913), �v is the volume of crystal and Io is the energy incident

per unit area in the beam. If the crystal is very large and

absorbing, this expression is replaced by

Igeom ¼ I
Q

2�
; ð5Þ

where � is the absorption coefficient and I ¼ IoSo is the

total energy of the incident beam (So is the cross section

of the incident beam). The same results were obtained by

Compton (1917) using a slightly different method of integra-

tion.

Darwin compared the calculated intensities with those

measured with rock-salt crystals by Moseley & Darwin

(1913b), and found them to be too large. He supposed that this

was due to the assumption made in neglecting the interaction

between the waves transmitted and reflected at each atomic

plane, and he took them into account in the second of his

papers (Darwin, 1914b), which is devoted to the dynamical

theory of diffraction, although Darwin did not use that

expression.

3.2.2. Theory of the reflection of X-rays by a perfect
crystal. As the incident wave propagates inside the crystal, it

generates both a reflected and a transmitted wave at each

lattice plane it crosses (Fig. 4). These in turn generate reflected

and transmitted waves whenever they cross an atomic plane,

and so on. The amplitudes and phases of the transmitted and

reflected waves are related, and this provides a set of recurrent
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Darwin’s dynamical theory. Sn: incident amplitude on plane n; Tn:
amplitude reflected from plane n. After Authier (2001).

Figure 3
Charles Galton Darwin (1887–1962) Source: Wikicommons.



equations. Let Sn and Snþ1 be the amplitudes of the waves

incident on the nth and ðnþ 1Þth planes, respectively, and Tn

and Tnþ1 be the amplitudes reflected from these planes. They

are related by

Sn ¼ iqTn þ ð1� iqoÞ expð�i’ÞSnþ1;

Tnþ1 expði’Þ ¼ ð1� iqoÞTn � iq expð�i’ÞSnþ1;

where ’ ¼ 2�a sin �=� is a phase factor and qo is the

amplitude of the wave scattered in the forward direction. By

solving this set of equations, it is possible to obtain the

expression for the amplitude reflected at the surface of

the crystal. Darwin showed that, if absorption is neglected, the

amplitude is imaginary within a narrow angular range

proportional to jqj; this is the domain of total reflection (see

Fig. 5). Its width is

2	 ¼
N�2RjFhklj

� sin 2�
ð6Þ

and it is much narrower than the angular range of reflection

given by the geometric theory; it is now called the Darwin

width. In practice, crystals are always absorbing and the

reflectivity is never 100%. The expression for the reflected

intensity for absorbing crystals was first given by J. A. Prins

(1930).

The centre of the total-reflection domain is shifted with

respect to the Bragg angle by, in the symmetric reflection

geometry (the only case considered by Darwin),

�� ¼
NR�2Fo

� sin 2�
; ð7Þ

where Fo is the scattered amplitude in the forward direction.

This shift is due to the effect of the refraction of the X-rays in

the medium, as will be discussed in x4. The complete calcu-

lation with the dynamical theory shows that equation (7)

should be multiplied by an asymmetry factor, which is equal to

zero for a symmetric transmission geometry.

For a divergent incident beam, the intensity of the total

reflected beam (integrated intensity) is given by

Idyn ¼ Io

8NR�2jFhklj

3� sin 2�
expð�MÞ

1þ j cos 2�j

2
: ð8Þ

This expression is very different from that given by the

geometrical theory, equation (4). It is proportional to the

absolute value of the structure factor and not to its square, it

does not depend on the size of the crystal, and it is much

smaller.

Darwin found that the reflected intensities calculated with

equation (8) were not in better agreement with the experi-

mental ones than those calculated from equations (4) or (5).

This time, they were too small. This result was very baffling

and Darwin attributed it to the presence of imperfections. He

supposed that at various depths the crystal was twisted by

an amount sufficient to allow a new reflection. One would

therefore expect a wider angular range of reflection and a

larger total reflected intensity. This was a first qualitative

attempt at what would be the theory of extinction developed a

few years later by Darwin (1922).

3.2.3. Extinction. The term ‘extinction’ was introduced by

Bragg, James and Bosanquet (Bragg et al., 1921a,b). They

made very thorough measurements of the intensities reflected

by crystals of rock salt, with the aim of determining its electron

distribution and ascertaining whether the sodium atom

had passed an electron over to the chlorine. They applied

expression (5) given by the geometrical theory for the inten-

sities and found that, at small glancing angles, one had to apply

an anomalously large absorption coefficient. They attributed

this to an ‘extinction’ effect due to the presence of imperfec-

tions.

This led Darwin to re-examine theoretically the reflection

from crystals (Darwin, 1922). He was able to relate relations

(4) and (8) and to show that, if the crystal is m lattice planes

thick,

Idyn ¼ Igeom

tanh mq

mq
� Igeom;

where q is defined by equation (3).

For a thick perfect crystal (m large), equation (8) holds,

while for a very thin perfect crystal (m small), it is equation (4)
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Figure 5
Reflection geometry. Left: dispersion surface. Right: total-reflection domain. After Ewald (1917).



which is valid. This suggested to Darwin a way out of the

difficulty due to the disagreement between the experimental

reflectivities and those calculated with either equation (4) or

equation (8). He imagined the crystal to be a conglomerate of

small blocks of perfect crystal [according to R. W. James

(1962), the term ‘mosaic crystal’ is in fact due to Ewald]. Two

situations may arise: the small blocks are not thin enough,

their reflectivity becomes closer to that predicted by the

dynamical theory; it must therefore be multiplied by a

correction factor, which was called the primary extinction

correction by Darwin. If the lattice planes in two successive

blocks are nearly parallel, part of the incident intensity is

reflected off by the first block before it reaches the second

one. This is at the origin of the secondary extinction

correction, which is taken into account by an artificial

absorption coefficient.

The appropriate formulae to use for the reflected intensities

were discussed during a conference organized by P. P. Ewald in

Ammersee, Bavaria, in September 1925, and are reviewed in

Bragg et al. (1926), where extinction is discussed in detail.

Darwin’s model is in reality too crude, and not applicable to

most crystals. The problem of extinction remains acute even

today, since it affects mainly the low-order reflections, which

are particularly important for the determination of accurate

electronic distributions. More and more sophisticated theories

have been elaborated over the years, by such crystallographers

as W. C. Hamilton, W. H. Zachariasen, P. Coppens, P. J. Becker

and N. Kato.

3.2.4. Experimental study of reflection profiles – the
double-crystal spectrometer. Typical widths of the total-

reflection domain are of the order of a few arc seconds or

less. Before synchrotron-radiation times, the divergence and

spectral width of the incident beam, even after being mono-

chromated by a preliminary reflection at a crystal surface,

prevented the direct observation of reflection profiles. Davis &

Stempel (1921) were the first to use a double-crystal setting

using the same reflection on two identical crystals in the

parallel, or ðþ;�Þ, arrangement (Fig. 6). If ray 1 satisfies

Bragg’s condition on the first crystal for a given wavelength,

�1, and ray 2 for another wavelength, �2, they both satisfy

Bragg’s condition on the second crystal: the setting is non-

dispersive and the observed reflection profile is the convolu-

tion of the reflection profiles of the two crystals. Davis and

Stempel used freshly cleaved calcite faces, but the angular

widths of the profiles they observed were significantly larger

than the theoretical ones according to equation (6). The first

person to observe profile widths which were very close

to the theoretical values with a double-crystal spectrometer

was Renninger (1934), who was at the time an assistant of

Ewald’s in Stuttgart. He used cleavage faces of rock salt

for both crystals. The double-crystal method has been

widely used, in particular in the design of monochromators.

Modern monochromators are ‘channel-cut’, that is, the two

crystals belong to the same single-crystal block of silicon or

germanium.

In order to record intrinsic reflection profiles, the diver-

gence of the incident beam must be smaller than the width of

the profile. This was first achieved by Renninger (1955) using a

triple-crystal spectrometer (Fig. 7) with three calcite crystals.

It is now possible routinely with synchrotron-radiation tech-

niques.

3.3. Ewald’s theory – 1917

3.3.1. The dispersion surface. Ewald (1917) developed the

dynamical theory of diffraction during World War I, while he

was stationed on the Russian front, where he was servicing a

mobile medical X-ray unit (Cruickshank et al., 1992). The most

important result of his dispersion theory is that the optical

field is a sum of plane waves. The electric field deduced from

the Hertz potential is

E ¼
P

h

Eh expð�2�iKh � rÞ expð2�i�tÞ; ð9Þ

where � is the frequency of the waves and r is a position vector.

Expansion (9) was called a wavefield by Laue (1931a) and is

sometimes called an Ewald wave. Solid-state physicists call it a

Bloch wave, after Bloch (1928).

The wavevectors Kh ¼ HP, called Anregungsvektoren by

Ewald, are vectors of the reciprocal space, where H is a

reciprocal-lattice node, and they are related to one of them,

Ko ¼ OP, by translations h of the reciprocal lattice (Fig. 8,

left):

Kh ¼ HP ¼ Ko � h ¼ OP�OH; ð10Þ

where O is the origin of the reciprocal space, Kh ¼ HP is the

diffracted wave and Ko ¼ OP is the incident wave. The joint

extremity, P, of the wavevectors was called the Anregungs-

punkt, the excitation point, by Ewald (1917), but he later

called it the ‘tiepoint’ to emphasize the link between the

waves. Indeed, as we shall see, they propagate together in the
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Figure 6
Double-crystal setting, parallel or anti-dispersive arrangement. After
Davis & Stempel (1921).

Figure 7
Rocking curve obtained with a triple-crystal spectrometer; calcite, 211,
Cu K�. Reproduced from Renninger (1955).



crystal, generating standing waves, and have the same anom-

alous absorption properties.

The amplitudes of the waves are related to one another by,

for a plane-polarized wave,

Eh ¼
K2

h

K2
h � k2

X

h0


0hEh0 ; ð11Þ

which expresses the self-consistency of the problem. The

summation is over the reciprocal-lattice nodes and 
0h is the h0

coefficient of the Fourier expansion of the polarizability of the

medium.

For the set of linear equations (11) to have a non-trivial

solution, its determinant must be equal to zero. The corre-

sponding secular equation is the dispersion equation. It is the

equation of the surface on which the tiepoint P must lie, the

dispersion surface.

The only terms in expansion (9) which have a non-negligible

amplitude are those for which the resonance factors

1=ðK2
h � k2Þ are very large, namely those for which Kh is not

very different from the wavenumber in vacuum, k. They

correspond to the reciprocal-lattice points which are close to

the Ewald sphere. Far from the Bragg condition for any

reflection, there is only one such term, and one wave only

propagates inside the crystal. Ewald limited himself to the

two-beam case in which there are only two reciprocal-lattice

nodes close to the Ewald sphere and two terms only in

expansion (9), Eo and Eh. The dispersion surface is then

composed of two sheets connecting the two spheres centred

at O and H and of radii n=�, where n is the refractive index

(Fig. 8).

3.3.2. Wavefields excited in the crystal by the incident
wave – reflection profiles. The next step is to introduce the

boundary conditions and find which are the waves actually

excited in the crystal. The dispersion surface is the equivalent

of the surface of indices in optics and one simply applies

Huygens’s construction. Two geometrical situations are to be

distinguished: transmission, or Laue geometry, and reflection,

or Bragg geometry.

Transmission geometry. Here the normal to the entrance

surface of the crystal cuts across both branches of the

dispersion surface (Fig. 9, left). There are two tiepoints, P1 and

P2, and two wavefields propagating inside the crystal. The

boundary conditions are applied in the same way at the exit

surface of the crystal to determine the reflected wave. The

variations of its intensity with the glancing angle of the inci-

dent wave are shown in Fig. 9, right.

Reflection geometry: the normal to the entrance surface

intersects one branch only of the dispersion surface (Fig.

5, left). The waves corresponding to the two points of

intersection propagate, one downwards towards the inside

of the crystal and the other one in the opposite direction.

If the normal to the entrance surface lies between the posi-

tions R and T on the figure, the intersection points are

imaginary and there is total reflection, as shown on Fig. 5,

right, representing the variations of the reflected intensity

with glancing angle of the incident wave. It is the famous ‘top-

hat’ curve.

Twenty years after his main article, Ewald published a

development of his theory for any kind of lattice and taking

the full structure factor into account (Ewald, 1937).

3.3.3. Pendellösung. In the transmission geometry, the

diffracted waves overlap as they propagate inside the crystal.

The waves associated with the two branches of the dispersion

surface interfere, and Ewald (1917) predicted that a periodic

transfer of energy should occur between the waves diffracted

in the incident and reflected directions, as shown in Fig. 10,
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Figure 9
Transmission geometry. Left: dispersion surface. Right: reflection curve.
Reproduced with permission from Ewald (1917). Copyright (1917) John
Wiley & Sons.

Figure 10
Plane-wave Pendellösung fringes as predicted by Ewald. After Ewald
(1927). Courtesy Springer Science and Business Media.

Figure 8
Ewald’s dynamical theory – dispersion surface. Left: general view. After
Authier (2001). Right: close-up view. Reproduced with permission from
Ewald (1917). Copyright (1917) John Wiley & Sons.

Figure 11
Hook-shaped Pendellösung fringes in a section topograph. Si, 220, Mo
K�. Courtesy N. Kato.



reproduced from a later publication (Ewald, 1927). He called

this effect Pendellösung, after the German verb, pendeln, to

oscillate. It took more than forty years until it was observed in

real life, by Kato & Lang (1959) for spherical waves (Fig. 11)

and by Malgrange & Authier (1965) in the plane-wave case. It

is now commonplace and is also observed in the reflection

geometry.

3.4. Laue’s theory – 1931

Max von Laue was born on 9 October 1879 in Pfaffenheim,

near Koblenz (Germany). He received his higher education at

the universities of Strasbourg, Göttingen and Munich. He

obtained his PhD in Berlin in 1903, prepared under the

direction of M. Planck, and completed his Habilitation in 1906

under Arnold Sommerfeld in Munich. He then went back to

Berlin as Privatdozent and assistant to Planck, and returned

in 1909 to Munich, to the Institute of Theoretical Physics

under Sommerfeld, where he conceived the 1912 experiment

for which he was awarded the 1914 Nobel Prize in Physics

(Fig. 12).

Laue admired Ewald’s thesis and considered it one of the

all-time masterpieces in mathematical physics (Laue, 1931a).

He noted, however, that it represented crystals by a discrete

distribution of single point dipoles, while the recent theories

about the structure of the atom pointed to a continuous

distribution of electronic charge, a view confirmed by the

studies of Bragg et al. (1922) and James et al. (1928) on rock

salt. This led him to reformulate the dynamical theory on an

entirely different basis. He assumed a continuous distribution

of the dielectric susceptibility of the medium for X-rays

and considered it to be proportional to the electron density.

A theory of the diffraction of X-rays by a medium with a

continuous dielectric susceptibility had already been devel-

oped in Vienna by Lohr (1924), but it did not have any

practical applicability.

Laue’s theory is in fact simpler than Ewald’s and is the

more popular one. It consists of looking for solutions of

Maxwell’s equations in a medium with a triply periodic

dielectric susceptibility. The electric negative and positive

charges are distributed in a continuous way throughout the

whole volume of the crystal, and cancel out so as to ensure

the neutrality of the crystal. The local electric charge and

density of current may therefore be put equal to zero in

Maxwell’s equations.

Laue finds it more convenient to represent the electro-

magnetic field through the electric displacement D because

div D ¼ 0. By elimination of the electric and magnetic

fields in Maxwell’s equation, one obtains the propagation

equation,

�Dþ curl curl 
Dþ 4�2k2D ¼ 0: ð12Þ

The dielectric susceptibility 
 can be expanded in a Fourier

series:


 ¼
P

h


h expð2�ih � rÞ;

where the coefficients 
h are proportional to the structure

factor Fh.

The electric displacement is therefore also triply periodic

and can be expanded in a Fourier series analogous to (9),

D ¼
P

h

Dh expð�2�iKh � rÞ expð2�i�tÞ; ð13Þ

which expresses the wavefield propagating in the crystal.

By substitution of the expansions of 
 and D in the

propagation equation (12), one finds that the amplitudes Dh

satisfy a set of equations similar to (11), from which the

dispersion surface is deduced in the same way.

In the 1931 article, Laue discussed the properties of the

dispersion surface and derived expressions for the reflected

intensity in both the transmission and reflection geometries,

which are more convenient than Ewald’s, but did not go

further into the study of dynamical diffraction. A first exten-

sion of the theory was published after Laue had applied it to

the explanation of the contrast of Kossel lines (Laue, 1941). A

second edition of that book was published in 1945 with only

small changes and a third, more developed edition, describing

the propagation of wavefields inside the crystal and their

anomalous absorption, appeared during the year of Laue’s

accidental death (Laue, 1960). An account of Laue’s theory

covering the progress that took place during the 40 years that

followed can be found in Authier (2001).

Laue’s theory of a continuous distribution of dielectric

susceptibility was later justified quantum-mechanically by

Moliere (1939a,b). The correspondence between Ewald’s and

Laue’s dynamical theories was worked out by Wagenfeld

(1968).
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Figure 12
Max von Laue (1879–1960) Source: Max von Laue – Biography.
Nobelprize.org.



3.5. Extension to spherical waves (Kato – 1960)

Darwin’s, Ewald’s and Laue’s dynamical theories were valid

for incident plane waves and perfect crystals. For that reason,

they were difficult to verify experimentally, since beams from

X-ray laboratory sources, however well collimated and

monochromated, are never plane waves. The first person to

extend the dynamical theory to spherical waves was N. Kato

(Fig. 13). He expanded a spherical wave into plane waves by

means of a Fourier transform, applied Laue’s theory to each of

these plane waves and then integrated the results over the

whole width of the dispersion surface (Kato, 1960). He was

inspired to do so by the observation of the hook-shaped

fringes in Fig. 11 (see Authier, 2003). Kato’s theory opened the

way for more elaborate theories, such as S. Takagi’s (Takagi,

1962, 1969), allowing for any type of incident wave and for the

presence of defects in the crystals.

4. The refractive index of matter for X-rays

According to the dispersion theories available when the first

hypotheses concerning the electromagnetic nature of X-rays

were formulated, the refractive index was considered to be

very close to 1 for very short waves (Lodge, 1896). The first

person to have given an expression for the refractive index

for X-rays was Darwin (1914a). His argument was as follows.

If �iqo is the complex amplitude scattered in the forward

direction by the first lattice plane, the amplitude of the inci-

dent wave on the second lattice plane is

A ¼ ð1� iqoÞ expð2�i�tÞ
expð�2�ikrÞ

r
: ð14Þ

One has, after crossing s planes,

A ¼ ð1� iqosÞ expð2�i�tÞ
expð�2�ikrÞ

r

� expð2�i�tÞ
expð�2�ikr� iqosÞ

r
;

since jqoj is very small. Darwin remarked that the presence of

the term iqos implies a refractive index. If � is the glancing

angle and z ¼ sd ¼ r= sin � is the thickness of the crystal,

taking the origin of the position vector r at the entrance

surface, one obtains for the transmitted amplitude

expð2�i�tÞ
exp½�2�iðkþ qo=d sin �Þ�r

r

and, using equation (3),

ðexp 2�i�tÞ
expð�2�inkrÞ

r
;

where

n ¼ 1�
RN�2Fo

2�
¼ 1� 	 ð15Þ

is the refractive index, which is the result obtained far

from an absorption edge with the dispersion theories of

Lorentz (1916) and Ewald (1917). It is very close to 1; for

instance, for silicon and Cu K�, n ¼ 1� 0:757� 10�5. The

real and imaginary parts of 	 close to an absorption edge

were first calculated using quantum mechanics by H. Hönl

(1933).

By comparing equations (7) and (15), it can be seen that the

shift of the middle of the total-reflection domain with respect

to the Bragg angle is related to the refractive index by

�� ¼ 2
	

sin 2�
: ð16Þ

This shift was first observed by W. Stenström (1919) in M.

Siegbahn’s laboratory in Lund University, Sweden, and in

more detail by another student of Siegbahn’s, E. Hjalmar

(1920, 1923). They used a very accurate X-ray spectrograph

developed by Siegbahn (1919) for the measurement of X-ray

spectral lines. The observation came about from discrepancies

in the values of the wavelength of Cu L�1 deduced from

Bragg’s law, nd ¼ 2 sin �, for several orders of n in gypsum.

The deviation from Bragg’s law was suspected by W. Duane

and R. A. Patterson (Duane & Patterson, 1920) with

measurements of tungsten L lines with high-order reflections

on calcite, but it lay within experimental errors. It was studied

more fully in B. Davis’s laboratory in Columbia University,

New York, USA, first by Davis & Terrill (1922) with calcite

and Mo K�1 and then, at B. Davis’s suggestion, with crystals

ground so as to give an asymmetric reflection, which increases

the deviation, by Hatley (1924) with calcite, also with Mo K�1,

and by Nardroff (1924) with pyrite and Mo K�1, Cu K�1 and

Cu K�.

It is Ewald (1920, 1924) who explained the shift by the effect

of refraction and calculated it with the dynamical theory. It is

rather surprising that no one mentioned Darwin’s work at the

time.

5. Optical properties of wavefields

The notion of wavefield was introduced initially as a

purely mathematical entity: expression (9) describes the

optical field in the crystal for Ewald (1913, 1917) and equation
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Figure 13
Norio Kato (1923–2002) in 1975. Courtesy B. Capelle.



(13) gives the solution of the propagation equation (12) for

Laue (1931a). It does not appear in Darwin’s theory. In

fact, wavefields have a physical reality; the waves in a

given wavefield undergo the same anomalous absorption

(Borrmann, 1941, 1950), propagate along the same direction

inside the crystal (Borrmann, 1954; Borrmann et al., 1955),

and the path of individual wavefields can even be isolated

(Authier, 1960, 1961). The first evidence of the physical exis-

tence of the wavefields came from Laue’s interpretation of the

contrast of Kossel lines, based on the standing waves gener-

ated by the interference of the waves which constitute a

wavefield.

5.1. Kossel lines

Kossel lines occur when the fluorescent radiation from one

type of atom in a crystal is Bragg-reflected by the lattice planes

of that same crystal. One speaks then of lattice sources (Fig.

14, left). The primary radiation maybe either electrons or

X-rays. These lines lie at the intersections of cones having as

axes the normals to each family of lattice planes with the

photographic plate. As an example, the lines due to the

reflections on (�1111), (11�11) and (1�111) can be observed in Fig. 14,

middle. These line are in general dark or light, or have a

double contrast, dark–light or light–dark.

This effect was surmised by Clark & Duane (1923) and by

Kossel (1924), but not explained by them. It was clearly

observed for the first time in 1935, by Kossel and his co-

workers using electrons as the primary source (Kossel &

Voges, 1935; Kossel et al., 1935). The Kossel lines, which are

analogous to the Kikuchi lines observed in electron diffrac-

tion, were also studied in detail by G. Borrmann for his PhD

thesis, prepared under the supervision of Kossel in Danzig

(now Gdansk) – see Authier & Klapper (2007). He used

X-rays as the primary source, both in the reflection setting

(Borrmann, 1935, 1936) and in the transmission setting

(Borrmann, 1938), and, like Kossel and his co-workers, a

copper crystal as the source of the diffracted secondary

radiation. It is interesting to note that W. Friedrich and P.

Knipping had chosen a copper salt (copper sulfate penta-

hydrate) for their first attempts at observing diffraction of

X-rays by a crystal, the reason being that they believed it

would have something to do with fluorescence radiation (‘Da

wir anfangs glaubten, es mit einer Fluoreszenzstrahlung zu tun

zu haben . . . ’; Friedrich et al., 1912), and copper was a suitable

element, according to Barkla.

Borrmann observed that, in the transmission geometry, the

double contrast of the lines is inverse for thick crystals

(Borrmann, 1938). This was not explained at the time but was,

in fact, the first indication of anomalous absorption (Schülke

& Brümmer, 1962).

It is Laue (1935) who explained the fine structure of the

Kossel lines in the reflection geometry, using the properties of

wavefields and the reciprocity theorem. The intensity of the

wavefield excited by an incident plane wave is, after equation

(13), in the two-beam case

jDðrÞj2 ¼ jDo expð�2�iKo � rÞ þDh expð�2�iKh � rÞj
2: ð17Þ

Fig. 14, right, shows its variations across the reflection

domain, in the reflection geometry. Laue (1935) argued that,

according to the reciprocity theorem, the intensity distribution

in space of the beams resulting from the reflection of the

spherical waves emitted by the lattice sources should be

identical. The fact that it is indeed what is observed was

considered by Laue, at the time he was writing his 1960 book

(1959), as the only direct evidence of the physical existence

of the wavefields.

5.2. Standing waves

The intensity of a wavefield can be expressed from equa-

tions (17) and (10) by, in the two-beam case,

jDðrÞj2 ¼ jDoj
2
þ jDhj

2
þ jDoDhj cosð2�h � rþ  Þ; ð18Þ

where  is the phase of Dh=Do. Laue (1941) noted that

expression (18) shows that the interference of the waves Do

and Dh generates a set of standing waves in the crystal. The

term cos 2�ðh � rþ  Þ indicates that the nodes lie on planes

parallel to the lattice planes and that their periodicity is equal

to 1=h ¼ dhkl=n, where dhkl is the periodicity of the hkl family

of lattice planes and n is the order of the reflection. In

transmission geometry, the phase  is equal to � for wavefields
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Figure 14
Left: Lattice sources. Reproduced with permission from Kossel & Voges (1935). Copyright (1935) John Wiley & Sons. Middle: Kossel lines in a copper
crystal. After Voges (1936). Right: variation of the intensity of the wavefield jDj2 across the reflection domain, recalculated after Laue (1935).



associated with branch 1 of the dispersion surface and to 0 for

wavefields associated with branch 2. The nodes of standing

waves therefore lie on the lattice planes (planes of maximum

electronic density) for a wavefield associated with branch 1 of

the dispersion surface (Fig. 8) while it is the antinodes

(maxima of electric field) which lie on the lattice planes for

wavefields associated with the other branch of the dispersion

surface (Fig. 15, left).

In reflection geometry, the phase  varies from � to 0

across the total-reflection domain. For an incidence on the

low-angle side of the reflection domain, the nodes of

standing waves lie on the lattice planes (Fig. 15, right). As the

incidence sweeps the reflection domain, the nodes are

progressively shifted until they lie midway between the

reflecting planes for an incidence on the high-angle side of

the reflection domain. It is the antinodes which then lie on

the reflecting planes.

5.3. Anomalous absorption

Anomalous absorption of X-rays at a Bragg reflection is

one of the most remarkable properties of wavefields. It was

discovered by G. Borrmann (1941) and bears his name

(Borrmann effect). Borrmann (Fig. 16) was born on 30 April

1908 in Diedenhofen (now Thionville, France). He received

his higher education at the Technische Universität München

and the Technische Hochschule Danzig (now Gdansk,

Poland), where in 1930 he was awarded the title Diplom-

Ingenieur, and where, as mentioned before, he obtained his

PhD in 1936. In 1938, he was called by M. von Laue to the

Kaiser-Wilhelm-Institut für physikalische Chemie and Elek-

trochemie in Berlin-Dahlem (now the Fritz-Haber-Institut der

Max-Planck-Gesellschaft), where he turned to the study of

reflection by perfect crystals.

It is to Borrmann and his students that we owe the first

revival of the dynamical theory. When Ewald submitted his

Habilition’s work in 1917, Sommerfeld found it a beautiful

mathematical construction but predicted that it would never

have any practical applications. These came more than 20

years later, with Borrmann’s investigations.

The discovery of anomalous absorption came from the

observation by Borrmann of the forward-diffracted beams

transmitted through good-quality crystals of calcite and quartz

of various thicknesses, but only the quartz results were

published at the time (Hildebrandt, 1995, 2002; Authier &

Klapper, 2007). His experimental setup was the same as that

already used by Rutherford & Andrade (1914) to measure the

wavelength of �-rays diffracted by a rock-salt crystal: a point

source and a very divergent beam – the wide-angle method.

The trace of the forward-diffracted beam was expected to

show a deficit of intensity against the background because of

the intensity drawn out of the incident beam by the reflected

beam. It was the contrary that was observed, which baffled

Laue considerably. It could only mean an anomalously low

absorption. Laue (1949) accounted for the effect by calcu-

lating the intensities of the reflected and forward-diffracted

beams taking absorption into account. Borrmann (1950, 1954)

made very careful measurements of the anomalous absorption

with calcite crystals and gave a very simple physical explana-

tion: the nodes of the standing wavefields associated with

branch 1 of the dispersion surface lie on the planes of

maximum electronic density and there is minimum absorption

(Fig. 15, left). Wavefields associated with branch 2 have their

antinodes on these planes and are completely absorbed in

thick crystals.

Anomalous absorption takes place in a similar way in the

reflection geometry and is exhibited by the reflection profiles

(Fig. 15, right). On the low-angle side, it is wavefields asso-

ciated with branch 1 of the dispersion surface which contribute

to the reflection and undergo little absorption. On the high-

angle side, it is the wavefields associated with branch 2, and

they undergo a larger absorption, hence the asymmetry in the

reflection profile (Fig. 7 and top of Fig. 15, right).

5.4. Location of atoms at surfaces and interfaces

The shift of the system of nodes and antinodes in the

reflection geometry when one rocks the crystal through the
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Figure 16
Gerhard Borrmann (1908–2006) in 1992. Reproduced with permission
from Authier & Klapper (2007). Copyright (2007) John Wiley & Sons.

Figure 15
Position of the nodes and antinodes of standing waves. After Authier
(2001). Left: transmission geometry. Right: reflection geometry.



reflection domain (Fig. 15, right) can be made use of to

localize the position of atoms in the crystal. If the incident

radiation excites the emission of secondary radiation, either

fluorescent X-rays or photoelectrons, by atoms of the

crystal, this emission will be maximum when the atom lies at

an antinode of the electric field. The position of these

atoms can therefore be localized by detecting this secondary

radiation with an appropriate detector synchronously with

the recording of the intensity reflected by the crystal. From

the orientation of the crystal when the secondary emission

is excited, one can deduce the position of the atoms with

respect to the lattice planes. The nature of the atom or

impurity can be deduced from the analysis of this emission.

The variation of the intensity of the wavefields through the

total-reflection domain was first detected by B. W. Batterman

(1964), using fluorescence scattering, and he suggested the

application of this effect to the location of foreign atoms

(Batterman, 1969). The technique has given rise to quite a

new field for the study of impurities and adsorbed atoms at

crystal surfaces, as well as for the determination of recon-

structed crystal surfaces. For reviews, see, for instance,

Zegenhagen (1993), Vartanyants & Koval’chuk (2001) or

Authier (2001).

5.5. Path of the wavefields – Borrmann triangle, or fan

A surprising result of Borrmann’s 1950 article had been

that the propagation of X-rays in thick crystals was neither

along the incident nor the reflected directions, but in between,

along the lattice planes. This had already been guessed earlier,

in a very qualitative way, by Murdock (1934), who had

observed ‘triple Laue spots’ in quartz crystals. Laue had at first

not been convinced by Borrmann’s observations. But, from

Maxwell’s theory of electromagnetism, it is known that the

direction of propagation of the energy of an electromagnetic

wave is along the Poynting vector, S ¼ ReðE ^H	Þ, where

ReðEÞ is the real part of E and H	 is the complex conjugate

of H. Laue (1952a) calculated the Poynting vector by means

of the dynamical theory and showed that it is normal to

the dispersion surface (Fig. 17, left). A natural incident

beam is divergent and should therefore excite tiepoints along

the whole dispersion surface. It is therefore to be expected

that there should be wavefields propagating inside the crystal

along all the directions lying between the incident and

reflected directions (Borrmann, 1954, 1959a). They fill out

what is now called the Borrmann triangle, or fan (Fig. 17,

right). The anomalous absorption is maximum for waves

propagating along the lattice planes, and, for thick crystals,

these waves are the only ones observed, as Borrmann (1950)

had shown. The path of wavefields in a calcite crystal was then

studied carefully by Borrmann et al. (1955), bringing the

confirmation of Laue’s calculations. That calculation was later

generalized by Kato (1958) to the n-beam case. Ewald (1958)

pointed out that Laue’s and Kato’s calculations implied inci-

dent plane waves, which was not the case in practice, and did

not provide a physical description of the behaviour of the

wavefields. He then proposed a very simple physical proof by

substituting wave bundles for plane waves and showing that

their group velocity is along the normal to the dispersion

surface.

5.6. Double refraction

5.6.1. Paths of individual wavefields inside the crystal. An

incident plane wave excites two wavefields inside the crystal

in the transmission geometry, of tiepoints P1 and P2 (Fig.

17, left), and of Poynting vectors S1, S2. The two wavefields

therefore propagate along separate paths inside the crystal.

In the general case of unpolarized radiation, there are in

fact four wavefields, two for each direction of polarization.

This is why Borrmann (1955) spoke of quadruple refraction

(Vierfachbrechung) of X-rays. In practice, the paths corre-

sponding to the two directions of polarization are so

close that it is hopeless to observe their separation. The

separation of the paths of wavefields 1 and 2 is in principle

also impossible to observe, since either the incident wave

is a spherical wave and all the possible directions of propa-

gation within the Borrmann fan are excited, or it is a plane

wave and its lateral expansion is by definition infinite. The

paths of the two wavefields then overlap and cannot be

separated.

A way around this difficulty is by isolating from the Borr-

mann fan a wave packet which is narrow both in direct and

reciprocal space (Authier, 1960). The paths of the two packets

of wavefields, 1 and 2, can then be separated (Fig. 18, left). The

result is shown in Fig. 18, right (Authier, 1961). It provides the
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Figure 18
Experimental proof of the double refraction of X-rays in a silicon crystal.
Left: experimental setup. Right: traces of the reflected and forward
diffracted beams. After Authier (2001).

Figure 17
Propagation of wavefields in a crystal. Left: reciprocal space. so: normal to
the crystal surface; P1, P2: tiepoints of the two waves excited in the
crystal; S1, S2: Poynting vectors. Right: Borrmann fan in direct space.
After Borrmann (1959a).



most direct experimental proof of the physical existence of the

wavefields.

5.6.2. Refraction of X-rays by a prism. If the crystal is

a plane-parallel slab, the wavevectors of the forward

diffracted waves outside the crystal are identical to that of

the incident wave. However, if the exit surface of the crystal

is not parallel to the entrance surface, as in a prism, the

outgoing wavevectors will be different to the incident one.

This was predicted by Laue (1940) and observed by Kohra et

al. (1965).

5.7. Topography

The propagation of the wavefields within the Borrmann

triangle is hampered by the presence of crystal defects. Borr-

mann could thus observe images of dislocation lines as

shadows in the reflected and refracted beams for crystals with

a large value of �t, where � is the linear absorption coefficient

and t is the crystal thickness (Borrmann et al., 1958; Borrmann,

1959b). Dislocation images were also observed at the same

time, independently, by A. R. Lang (1958) with less absorbing

crystals, also by transmission, and by J. B. Newkirk (1958) and

U. Bonse (1958) in reflection geometry. This was the birth of

X-ray topography, a whole new field of investigations for all

sorts of crystal defects besides dislocations: planar defects

such as stacking faults, low-angle grain boundaries, twin

boundaries, domains (ferroelectric, magnetic, ferroelastic . . . ),

precipitates, inclusions and microdefects, long-range defects

and strain gradients, acoustic waves, and so on, with a very

wide range of applications ranging from the characterization

of growth defects to the study of the mechanisms of defor-

mations and to the quality control of semiconductor, electro-

optic or piezoelectric devices. For reviews, see, for instance,

Klapper (1991), Authier et al. (1996), Bowen & Tanner (1998)

and Authier (2001).

The characterization of the nature and the properties of the

crystal defects requires a deep understanding of the mechan-

isms of the formation of their images, which relies on the

application of the dynamical theory and its extensions to

deformed crystals.

5.8. X-ray interferometry

X-ray interferometry is another very important application

of the optical properties of X-rays at Bragg incidence. In its

initial and simplest version (Bonse & Hart, 1965), two thick

grooves are sawn out in a large, highly perfect single crystal

of silicon, so as to obtain three coherent equally spaced

crystal slabs connected by a common base (Fig. 19). The first

slab, the splitter, S, splits the incident beam into two beams,

R and T, which are transmitted in the reflected and incident

directions, respectively. They are incident on the second

crystal, the mirror, M, and give rise each to two beams, RT and

RR, TT and TR, respectively. The beams RR and TR converge

on the third slab, the analyzer, A. They are coherent and

interfere, generating a set of standing waves which has the

same periodicity as the lattice planes of the third slab. The

intensities of the beams diffracted by the analyzer, RRR +

TRT and RRT + TRR, depend on the position of the lattice

planes of the analyzer with respect to the nodes of the

standing waves. This position can be modified by translating

the third slab along the direction of the arrow, which can be

achieved by introducing a spring flexure between the second

and the third crystal and pushing the last one by means of a

piezoelectric drive. During this shift, the intensities RRR +

TRT and RRT + TRR vary periodically. By measuring the

translation of the crystal accurately and counting the fringes,

one can make a direct measurement of the interplanar

distance and obtain an absolute measurement of the X-ray

wavelength. The shift of the respective positions of the set of

standing waves and the lattice planes can also be obtained by

putting a phase object in the path of the R beam between the

first and second slab, thus allowing measurement of the index

of refraction of the object (Bonse & Hellköter, 1969; Creagh

& Hart, 1970).

Interferometers of various designs have been built and have

many applications for measurements of the index of refraction

and phase-contrast studies, as well as in nanometrology for

absolute measurements of lattice parameters, X-ray wave-

lengths or the Avogadro number. For a review, see, for

instance, Authier et al. (1996).

6. Conclusion

The dynamical theory of X-ray diffraction was born out of an

optics problem, Ewald’s thesis in 1912. During its first stage

of life, up to the mid-1930s, the main actors of which were

Darwin, Ewald and Laue, its objectives were limited to the

determination of the reflection profiles and integrated inten-

sities of perfect crystals. Owing to a lack of crystals perfect

enough to test the theory, it did not have any practical

application, as Sommerfeld had predicted.

Borrmann’s experimental observations of anomalous

absorption and wavefield trajectories are at the origin of
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Figure 19
Principle of the LLL interferometer. S: splitter; M: mirror; A: analyzer.
Bottom: side view. Top: top view. After Authier (2001).



dynamical theory’s second stage of life. They induced Laue

to make a theoretical study of anomalous absorption and of

the propagation of wavefields in crystals. The importance of

Borrmann’s work was stressed by P. P. Ewald in the following

words addressed to him during the celebration of his 65th

birthday and reproduced in a special issue of Zeitschrift für

Naturforschung (28a, 1973): ‘Concepts such as wavefields and

fans of rays have been awoken from the slumber of theory by

your exemplary and cleanly conducted research and have

been established into physical reality’ (quoted in Authier &

Klapper, 2007).

The availability in the late 1950s of highly perfect silicon

and germanium crystals enabled experimental verifications

of theoretical predictions to become possible, such as

intrinsic reflection profiles and Pendellösung. The develop-

ment of X-ray topography led to developments of the

theory for spherical waves and for deformed crystals, with

the hope of bridging the gap between the diffraction theories

for perfect and ‘ideally imperfect’ crystals. The range of

practical applications, from the characterization of the

nature and properties of extended crystal defects to the study

of crystal surfaces and to interferometry, became extremely

wide.

Dynamical theory’s third stage of life started with the

arrival of the third-generation synchrotron-radiation sources,

which opened up entirely new possibilities. The high bright-

ness, low divergence, tunability and spatial coherence of the

new sources opened the way for a myriad of new experiments.

Many of them, as well as all the optical devices designed to

condition the beam, take advantage of the possibilities offered

by dynamical diffraction.

The dynamical theory is entirely based on Maxwell’s

theory of electromagnetism. It rests on a number of

restricting hypotheses, some of which have been waived later

by subsequent theories, but it is quite remarkable that no

flaw has ever been found in its fundamentals and that it is

still valid and in use today, 100 years after the discovery of

X-ray diffraction.

AA thanks Helmut Klapper and Wolfgang Schmahl for

their critical reading of the manuscript.
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