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A new two-step algorithm is developed for reconstructing the three-dimensional

diffraction intensity of a globular biological macromolecule from many

experimentally measured quantum-noise-limited two-dimensional X-ray laser

diffraction patterns, each for an unknown orientation. The first step is

classification of the two-dimensional patterns into groups according to the

similarity of direction of the incident X-rays with respect to the molecule and an

averaging within each group to reduce the noise. The second step is detection of

common intersecting circles between the signal-enhanced two-dimensional

patterns to identify their mutual location in the three-dimensional wavenumber

space. The newly developed algorithm enables one to detect a signal for

classification in noisy experimental photon-count data with as low as

�0.1 photons per effective pixel. The wavenumber of such a limiting pixel

determines the attainable structural resolution. From this fact, the resolution

limit due to the quantum noise attainable by this new method of analysis as well

as two important experimental parameters, the number of two-dimensional

patterns to be measured (the load for the detector) and the number of pairs of

two-dimensional patterns to be analysed (the load for the computer), are

derived as a function of the incident X-ray intensity and quantities

characterizing the target molecule.

1. Introduction

New, intense X-ray free-electron laser (XFEL) light sources

offer a new possibility in imaging single biological macro-

molecules. The main problems to be solved for realization of

this possibility originate from the extreme weakness of the

scattered light from a single molecule. One problem is severe

damage of a target caused by a single shot of intense X-ray

light used to compensate for the weakness. In this respect, a

lower intensity of incident X-rays is preferred. Another

problem due to the weakness is the quantum noise. Algo-

rithms for structure determination must be developed to

process the experimental data immersed in the quantum noise.

From this perspective, a higher intensity of incident X-rays is

preferred. This paper focuses attention on this latter problem.

For this purpose we make a tentative assumption that the

damage process can be neglected, and will clarify the

mechanism of how the quantum noise sets a limit on the

resolution of structure determination. In other words, we are

interested in this paper only in the lower bound of the incident

X-ray intensity.

The damage problem prevents the possibility of using the

same molecule repeatedly as a target. Instead we assume

that a target macromolecule assumes a well defined three-

dimensional structure and a new molecule from an ensemble

of the same molecules is placed repeatedly at the target

position, but unfortunately in an unknown random orienta-

tion. A macromolecular complex with a definite molecular

composition and three-dimensional structure can also be

treated. The term ‘molecule’ is used to mean both a biological

macromolecule and its complex. Extension of the results of

this paper to cases of large-scale conformational fluctuations

with a magnitude larger than the resolution of structure

determination will be addressed in a future paper. Because of

this limitation, we specifically exclude fibrous macromolecules

and assume that molecules are globular with a more-or-less

spherical shape. Note also that we develop analyses in this

paper under idealizing (as compared with probable experi-
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mental realizations) assumptions about the state of the target

molecule such as (i) ideally random orientations and (ii) the

absence of hydrating water molecules. Adaptation to these

realistic problems will also be treated in future papers.

A measurable two-dimensional diffraction intensity pattern

depends on an unknown molecular orientation. This missing

orientational information is to be recovered computationally

during an analysis of a set of many two-dimensional intensity

patterns. Also missing in a two-dimensional intensity pattern is

the phase information necessary for derivation of a three-

dimensional molecular structure. This missing phase infor-

mation is also to be recovered computationally by the so-

called oversampling method (Fienup, 1982; Elser, 2003).

The methods of single-particle imaging by XFEL can be

classified into two paths, depending on which of the two types

of missing information is recovered first. In the first, path A,

method, a computational procedure is applied to a set of

phase-missing two-dimensional intensity patterns to find their

mutual locations in the three-dimensional wavenumber space.

When a sufficient number of two-dimensional patterns are

properly located, a three-dimensional diffraction intensity

function can be constructed, to which the oversampling

method is applied to recover the missing phase information.

Together with this phase information, a three-dimensional

real-space structure can be derived by an inverse Fourier

transformation. In the second, path B, method, the over-

sampling method is applied to each of the measured two-

dimensional intensity patterns. Together with the recovered

phase information, a two-dimensional real-space structure is

obtained by an inverse Fourier transformation, which is

approximately a projection of a three-dimensional real-space

structure along an axis of the incident X-ray beam. Such two-

dimensional structures of a minivirus particle as revealed by a

single-shot 6.9 Å hard-X-ray free-electron laser have been

recently reported (Seibert et al., 2011). From many projected

two-dimensional images thus obtained, a three-dimensional

real-space structure can be constructed by applying the

method of tomography. Such a three-dimensional human

chromosome structure as revealed by coherent 2.5 Å X-rays

from synchrotron radiation has been reported (Nishino et al.,

2009).

Because of the weakness of scattered light from a single

molecule, the quantum noise is a serious problem especially at

high-angle pixels. The quantum noise appears to limit the

resolution of a three-dimensional real-space structure to be

obtained at the end, though by different mechanisms in paths

A and B. In path A, the quantum noise is expected to set a

resolution limit to locating a two-dimensional intensity pattern

in the three-dimensional wavenumber space. Because photon-

count data at many pixels can be considered integrally in a

computational procedure to find a location, effective infor-

mation seems extractable even from high-noise data at pixels

with an expected mean photon count smaller than unity. Even

though data at high-angle pixels are very noisy in each of the

two-dimensional intensity patterns thus located, data at

similar locations can be averaged to reduce the noise. The

attainable structural resolution is determined by the wave-

number of a limiting pixel, from the data of which effective

information can be extracted. In path B, where the over-

sampling method is applied directly to each two-dimensional

intensity pattern, the quantum noise is expected to set a

limit on the applicability of this method. When high-noise

data from high-angle pixels with an expected photon count

smaller than unity are included, the phase recovery procedure

is expected to fail to converge and to cease to work. Therefore

a pixel with an expected photon count of unity appears to

be a limiting pixel, and its wavenumber appears to give

the resolution. From such an analysis we expect that the

path A analysis is better in extracting effective information

from noisy data and therefore in deriving higher-resolution

real-space structures. For this reason we are interested in this

paper in developing a path A method. Of course, superior

situations of the path B method are conceivable depending on

problems of developing detecting devices and sample

preparation, and also on the biological significance of the

results obtained.

Methods hitherto proposed to find the locations of indivi-

dual two-dimensional intensity patterns in the three-

dimensional wavenumber space in path A methodology can be

classified into two groups. In group 1 (Huldt et al., 2003; Bortel

& Faigel, 2007; Shneerson et al., 2008; Bortel et al., 2009; Yang

et al., 2010), a method of finding similarity between an arbi-

trary pair of two-dimensional intensity patterns is prepared.

Then, a set of two-dimensional patterns are classified into

groups of similar patterns according to this similarity, which

are then averaged to reduce the quantum noise. Then, for an

arbitrary pair of noise-reduced intensity patterns, their mutual

location in the three-dimensional wavenumber space is

identified by finding an intersecting circle between them. A

three-dimensional diffraction intensity function can be

constructed when a sufficient number of two-dimensional

patterns are properly located in the three-dimensional wave-

number space. In the methods of group 2 (Fung et al., 2009;

Loh & Elser, 2009; Elser, 2009; Loh et al., 2010), a tentative

three-dimensional diffraction intensity function (or a function

of similar mathematical setting) is assumed. Then, each two-

dimensional intensity pattern is located so as to best fit in this

three-dimensional intensity function. From a set of two-

dimensional patterns thus located, the three-dimensional

diffraction intensity function is updated. By repeating this

cycle of best fitting and updating, an ultimate three-

dimensional diffraction intensity function is obtained. Even

though the methods of the second group appear promising,

the demonstrated abilities of the individual methods proposed

so far are limited.

We focus attention in this paper on developing an algorithm

beyond existing methods of single-particle imaging belonging

to the path A, group 1 methodology. New developments have

been attained in two aspects. First, we will develop and

improve methods of computational analyses and procedures

to arrange a set of many experimentally measurable two-

dimensional intensity patterns in the three-dimensional

wavenumber space so that a three-dimensional intensity

function can be constructed. The newly developed method
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enables us to attain higher-resolution structures. Second, we

will derive explicit theoretical expressions for two main

parameters which govern the number Nmeasure of two-

dimensional patterns to be measured (the load for the

measuring machine) and the number Ncompare of pairs of two-

dimensional patterns to be compared (the main computational

load for analyses), as well as for the space resolution attain-

able from the analysis of the data, in terms of (a) the X-ray

intensity used for the measurement and two types of quantities

characterizing a target; (b) the Shannon molecular length (or,

simply, molecular length) L (the length of a side of the

smallest cubic box that can contain a target globular mole-

cule); and (c) the radial diffraction intensity density function

i kð Þ (the average of the the squared modulus of the structure-

factor function on a sphere k ¼ kj j in the wavenumber space).

The achievement of the second aspect provides basic infor-

mation for designing new experiments and experimental

instruments.

The results in the two aspects are obtained in this paper by

taking advantage of simulated diffraction intensity data for a

protein, lysozyme, and a protein complex, HslUV complex, for

which structural atomic coordinates are available from the

Protein Data Bank (PDB) (Berman et al., 2000). The former

(Weaver & Matthews, 1987) (PDB code 2lzm, number of

residues 164, molecular length 60 Å) is chosen as a typical

small globular protein. The latter (Sousa et al., 2002) (PDB

code 1kyi, total number of residues 7416, molecular length

200 Å) is chosen from very large protein complexes in the

PDB with more-or-less globular shape. But it is in a sense an

atypical complex, because it has a big hollow space inside the

structure. Simulations are carried out by assuming the wave-

length of incident X-rays � ¼ 1 Å and for various intensities.

The Shannon molecular length L and radial diffraction

intensity density function i kð Þ are determined for these two

targets from their respective PDB atomic coordinates, and are

used to estimate numerical values of the two main experi-

mental parameters, Nmeasure and Ncompare, and also of the

attainable resolution as functions of the incident X-ray

intensity.

To make the results of this paper more useful for designing

new experiments and experimental instruments, the theory

must be extended so as to be applicable even for structure-

unknown molecules. This objective is studied in a separate

paper.

This paper is ordered as follows. In x2, we will discuss a

method of finding similarity between an arbitrary pair of two-

dimensional diffraction intensity patterns. This method is used

to classify two-dimensional patterns into groups of similar

patterns. In x3, we will treat the problem of finding relative

orientations between groups of similar patterns, which is

information to be used for assembling two-dimensional

intensity patterns into a three-dimensional diffraction

intensity density function. In x4, we will give a somewhat

detailed summary. Readers may find it easier to comprehend

xx2 and 3 by reading x4 in parallel. Appendices A, B and C

describe mathematical derivations of relations used in

xx2 and 3.

2. Classification of two-dimensional diffraction
intensity patterns

2.1. Two-dimensional diffraction pattern on an Ewald sphere

Here we define notations of pertinent quantities. The

experimentally observable diffraction intensity s kð Þ, given in

the unit of a number of photons arriving at a pixel of the

detector of solid angle !, is given, except for a phase factor, by

s kð Þ ¼ C!i kð Þ; C ¼ Iir
2
CE; i kð Þ ¼ F kð Þ

�� ��2; ð1Þ

where Ii is the incident X-ray intensity (given, in the following,

in the unit of a number of photons per pulse of free-electron

laser per mm2), rCE is the classical electron radius, C is a

coefficient given by these quantities, F kð Þ is the structure

factor, k is the momentum transfer and i kð Þ is the diffraction

intensity density. The magnitude of the momentum transfer is

given by

k ¼
2

�
sin
�

2
; ð2Þ

where � is the X-ray wavelength and � is the angle of

diffraction. Note that, even though this angle is expressed as

2� in the usual literature, we nevertheless express it as �
because this quantity, having a meaning as part of a certain

polar angle, has an important role in this paper. Even though

the structure factor F kð Þ is a continuous function in the

wavenumber space, its squared modulus is measured experi-

mentally by a detector with an array of finite-sized pixels.

When F kð Þ
�� ��2 is discretely sampled at lattice points of a cubic

lattice with a lattice constant of 1=R, it corresponds to the use

of the detector pixel size of ð�=RÞ
2 in solid angle, i.e.

! ¼ �=Rð Þ
2
¼ �=�Lð Þ

2: ð3Þ

In this expression, L is the length of a side of the smallest cubic

box (Shannon box) that can contain a target globular mole-

cule. We shall refer to this quantity as the Shannon molecular

length or simply the molecular length. From the point of view

of the oversampling method for phase retrieval (Fienup, 1982;

Elser, 2003), the detector pixel size must be chosen so that

R � L. The ratio � ¼ R=L is called the linear oversampling

ratio. A pixel with � ¼ 1 will be referred to as a Shannon pixel.

The quantity of equation (1) is an expected number of

photons arriving at a detector pixel. However, in real

experiments, what is measured is an integral number of

photons, given by the quantum-mechanical probability. In this

paper we simulate this probability by replacing the function

s kð Þ of equation (1) with a stochastic function sQ kð Þ which

assumes only integral values according to the Poisson distri-

bution. To distinguish these two functions, let us call the

quantity of equation (1) the theoretical diffraction intensity,

and the replaced stochastic function the experimental

diffraction intensity.

Examples of a simulated two-dimensional experimental and

a theoretical diffraction intensity pattern are shown in Figs.

1(a) and 1(b), respectively, for the case of lysozyme. We see

that, when theoretical diffraction intensities are much less

than unity, experimental diffraction intensity values at most
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pixels vanish. From such noisy data, we have to guess the

correct mean values. These are patterns for which we develop

a method of analysis for structure determination. For this

purpose we need some theoretical tools. A mathematical

expression of a two-dimensional pattern for a molecule with a

given orientation is explored in detail in Appendix A. A

molecular orientation is described by a Eulerian angle

�; �; �ð Þ with its corresponding 3 � 3 orthogonal matrix A

given by equation (27). The Eulerian angle is defined so that,

out of a set of three angles, ��;��ð Þ are polar angles of the

direction of the incident X-ray beam with respect to the

molecule, and � is an angle of rotation of the detector plane

around the axis of the incident beam. A two-dimensional

pattern is given by the quantity of equation (1) on the surface

of an Ewald sphere. By introducing a polar coordinate �; ’ð Þ

on the surface of an Ewald sphere, the two-dimensional

pattern is given from equations (40), (39), (35) and (42) by

s �; �; �; �; ’ð Þ ¼ sA �; ’ð Þ ¼ C! F Ah �; ’ð Þ½ �
�� ��2

¼ s 0; �; �; �; ’� �ð Þ: ð4Þ

This equation means that the Ewald spheres corresponding to

�; �; �ð Þ and 0; �; �ð Þ are essentially the same spheres giving

the same surface.

2.2. High correlation line in a correlation pattern

As outlined in x1 we adopt in this paper the basic strategy in

which, after measurement of a large number of two-

dimensional patterns for a molecule in unknown random

orientations, we classify them into groups of similar patterns.

In the following we consider a pair of Eulerian angles

�i; �i; �ið Þ and �j; �j; �j

� �
with corresponding matrices A ið Þ and

A jð Þ, and two-dimensional patterns s i; �; ’ð Þ and s j; �; ’ð Þ. For

this pair we will be interested in an angle �ij between the two

beam directions ��i;��ið Þ and ��j;��j

� �
, which satisfies

cos �ij ¼ sin �i sin �j cos �i � �j

� �
þ cos�i cos�j: ð5Þ

This angle plays the role of a measure of similarity between a

pair of two-dimensional patterns. When it is very small, we

classify them into one group of similar patterns even for very

different �i and �j.

Our problem is to judge, for a given pair of experimental

two-dimensional patterns such as those shown in Fig. 1(a),

whether or not they are realizations of a similar theoretical

two-dimensional pattern. The starting point is the calculation

of a correlation function as was originally proposed by Huldt

et al. (2003). In this treatment we are interested in pixels on a

circle with a fixed value of �. Let the number of pixels on a

circle be N�. Bortel & Faigel (2007) proposed to pre-normalize

the data on a circle to have uniform second moments for the

calculation of a correlation function. More recently, they

(Bortel et al., 2009) proposed further to pre-normalize so as to

have vanishing mean and uniform second moment and also to

compare axially rotated patterns. In our method we normalize

the data on a circle to have a uniform mean and are interested

in the correlation of their deviation from the mean after they

are mutually rotated by an angle �. This means that we are

concerned with the following correlation function:

cij �; �ð Þ ¼
1

N�

XN��1

l¼0

~ssQ i; �;
2	l

N�

� �
� 1

� �
~ssQ j; �;

2	l

N�

þ �

� �
� 1

� �
;

~ssQ i; �;
2	l

N�

� �
¼ sQ i; �;

2	l

N�

� �	
sQ i; �ð Þ;

sQ i; �ð Þ ¼
1

N�

XN��1

l¼0

sQ i; �;
2	l

N�

� �
: ð6Þ

This quantity can also be expressed as follows:

cijð�; �Þ ¼
�ijð�; �Þ

sQði; �ÞsQðj; �Þ
� 1;

�ijð�; �Þ ¼
1

N�

XN��1

l¼0

sQ i; �;
2	l

N�

� �
sQ j; �;

2	l

N�

þ �

� �
: ð7Þ
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Figure 1
Examples of two-dimensional diffraction intensity patterns simulated for
lysozyme by assuming the wavelength of the incident X-rays � = 1 Å and
the intensity Ii ¼ 5� 1021 photons pulse�1 mm�2. In (b), the theoretically
expected mean number of diffracted photons arriving at a Shannon pixel
is shown. In (a), the number of photons is an integer, chosen according to
the Poisson distribution having the theoretically expected mean value as
its mean. For this assumed intensity, the mean count of 0.1 photon is
observed at 1=k ffi 2 Å. In this figure both the abscissa and ordinate show
detector coordinates in the sense that they are proportional to
coordinates on a flat detector on which the surface of an Ewald sphere
is radially projected from its centre (central azimuthal projection).



The correlation function of equation (6) is calculated as a two-

dimensional function of � and �, which will be referred to as a

correlation pattern. The merits of using the normalized

quantity of equation (6) are to normalize for variations of

intensities over different circles and for experimental varia-

tions of the pulse intensities of XFELs.

An example of a correlation pattern is shown in Fig. 2(a). In

this figure the pattern is shown not as a function of � and � but

as a function of k and �, where k is given by equation (2). In a

general case where the angle �ij between the two beam

directions is not very small, this correlation pattern appears to

be a random function of k and �. Let us write such cij �; �ð Þ as

cBG �; �ð Þ, where BG stands for background. When �ij is very

small, there appears a line of high correlation for a certain

value of �. In the particular case of Fig. 2(a), the two beam

directions are identical, and therefore both �ij and � vanish.

The correlation pattern of equation (6) is heavily affected

by the quantum noise. When the quantum noise is suppressed,

this quantity is given approximately by

cij �; �ð Þ

 �

ffi
�ij �; �ð Þ

 �

�ssQ i; �ð Þ

 �

�ssQ j; �ð Þ

 �� 1; ð8Þ

where . . .h i is a mean averaged over the quantum noise. To

derive this expression we introduced an approximation of

taking the means of three factors independently, an approx-

imation which is good when standard deviations of the three

factors are significantly smaller than their respective means.

Examples of this quantity are shown in Figs. 2(b) and 2(c). Fig.

2(c) shows a pair of diffraction patterns for which the value of

�ij is not small. This is an example of cBG �; �ð Þ

 �

. Even though

Figs. 2(b) and 2(c) contain no effect of quantum noise, the

pattern other than the high correlation line appears to be

rather random. Such a behaviour should be a consequence of

an appearance of the diffraction intensity density function i kð Þ

that can be captured as a stochastic function.

To characterize the diffraction intensity density function

from such a point of view, we studied first how values of

i ¼ i kð Þ are distributed on a sphere of k ¼ kj j around its mean

i ¼ i kð Þ. For this purpose, �1:5� 105 points are sampled

randomly with a uniform probability on each sphere, and the

value of i kð Þ is calculated at each sampled point. We confirmed

that, except for small values of k, the distribution is given to a

very good accuracy by the exponential distribution as was

originally discovered by Wilson (1949). Moreover, as shown in

Fig. 3, it is found empirically that, except for small values of k,

values of i kð Þ on the sphere of k ¼ kj j are correlated in such a

way as to satisfy the following simple relation,

cN 
ð Þ 	
i k1ð Þi k2ð Þ

 �



� ih i2

i2h i � ih i2
¼ exp �

k


kC

� �2
" #

; ð9Þ

where 
 is an angle between the two k vectors, the average is

taken over all pairs of vectors with a given value 
, and the

correlation length kC has been found to be independent of the

value of k and is given approximately by

kC ¼
1

L
: ð10Þ

Because, as shown by Wilson (1949), the exponential distri-

bution is a consequence of the irregular three-dimensional
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Figure 2
Correlation pattern for lysozyme by assuming the intensity of the incident
X-rays Ii ¼ 5 � 1021 photons pulse�1 mm�2. (a) Correlation pattern of
equation (6) for a pair of two-dimensional experimental intensity patterns
obtained from an identical two-dimensional theoretical intensity pattern
but with different sets of random numbers for the Poisson distribution. A
high correlation line is observed extending from the origin towards the
direction of � ¼ 0. The high correlation line fades at a certain value of k
because of the quantum noise. (b) Correlation pattern of equation (8),
which is obtained by averaging the pattern shown in (a) over the quantum
noise. Because of the suppressed quantum noise, the high correlation line
is now observed extending to high k values. (c) When the directions of the
beam axes are significantly different in a pair of two-dimensional intensity
patterns, the high correlation line is absent. In this and subsequent figures
(Figs. 2, 4 and 8), unlike in Fig. 1, both the abscissa and ordinate are taken
to be proportional to k. In this case, the area in the figures is also
proportional to that on the curved Ewald spheres (Lambert’s azimuthal
equal-area projection).



structures of biopolymers at the atomic level, we shall refer to

the empirically observed distribution as a structure irregularity

distribution.

To derive the mean behaviour of cBG �; �ð Þ, we average

cBG �; �ð Þ

 �

over the structure irregularity distribution. As

shown in Appendix C, we see that cBG �; �ð Þ

 �
 �

vanishes. This is

reasonable because when there is no correlation between two

points on two circles appearing in equation (6) an average can

be taken on each of ~ssQ � 1
� �

to yield a vanishing result.

Further examples of a correlation pattern of equation (6)

are shown in Fig. 4. Because the mean of the correlation

pattern vanishes except for a high correlation line, a mathe-

matical expression of the high correlation line should be

obtained as a mean of the correlation pattern over the two

distributions, the Poisson distribution and the structure irre-

gularity distribution. As shown in Appendix C it is given to a

good approximation by the following expression:

cij �; �ð Þ

 �
 �

ffi exp �
k

kC

� �2

�� �̂�ij

� �2
þ
�2

ij

2

" #( )
ð11Þ

where k is a function of � through equation (2) and the

direction of the high correlation line, �̂�ij, is given to the zeroth

order of the small quantity �ij by

�̂�ij ¼ �j � �i

� �
þ o �ij

� �
: ð12Þ

It should be noted that k appears in equation (11) as a

quantity normalized by kC, or, because of equation (10), as a

product kL.

As mentioned earlier, Bortel et al. (2009) proposed to use a

quantity pre-normalized to have a vanishing mean and

uniform second moment. However, when we apply our

analysis to their proposed correlation pattern, an expression

similar to equation (11) is obtained but with an additional

factor which is approximately C!iðkÞ=½1þ C!iðkÞ� and

becomes smaller for larger k. Because of this additional factor,

the quantity they employed for detecting similarity between

two-dimensional patterns is less sensitive for high k values.

This explains why our method is more sensitive for higher k

values.

2.3. Identifying the high correlation line against the noisy
background and attainable resolution

In Fig. 4 we see that, even though the mean value of the

correlation pattern should vanish in the background, its actual

values become very noisy for larger values of k. This is due to

both the quantum noise and the structure irregularity distri-

bution. Identification of the high correlation line would be
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Figure 4
Correlation patterns for the HslUV complex and by assuming the
intensity of incident X-rays Ii ¼ 5� 1020 photons pulse�1 mm�2. (a), (b)
and (c) are for the angle �ij between the two beam directions being 0, 1
and 3
, respectively. Pixels having a value larger than 1:0 are shown by the
colour code of 1:0. We see in this figure that, for �ij = 3
, the high
correlation line is barely visible.

Figure 3
Normalized correlation function cN 
ð Þ of equation (9) for the space
correlation of the values of i kð Þ on a sphere kj j ¼ k of radius k for the
HslUV complex. The angle 
 is shown in the abscissa as a product with k.
For k equal to or larger than 0.2 Å�1, it is given to a very high accuracy by
a Gaussian function. Data only up to the case of 0.2 Å�1 are shown in the
figure. As k becomes smaller, slight deviations from the Gaussian
behaviour are observed.



affected by the noise. (Note that we are here treating the

structure irregularity distribution as a part of the noise.) The

level of noise in the quantity of equation (6) can be expressed

by its standard deviation. As derived in Appendix C, it is given

by

�2
c ¼

g C!i
� �
N�

; ð13Þ

where the function g is defined by

y ¼ g xð Þ ¼
5x2 þ 6xþ 1

x2
; ð14Þ

and N� is given by

N� ¼ 2	��1 sin �=kC ¼ 2	kL 1�
k�

2

� �2
" #1=2

; ð15Þ

which means that we are assuming Shannon pixels. Fig. 5

shows the graph of y ¼ g xð Þ. Fig. 6 is a plot of the

standard deviation given by equation (13), which is a

globally increasing function of k in the high-k region.

When averaged over the two distributions, the Poisson

distribution and the structure irregularity distribution, the

peak value of the high correlation line for a given

value of k (or, equivalently �) is

exp½�ðk=kCÞ
2
ð�2

ij=2Þ� according to

equation (11), which is a decreasing

function of k. It is expected that the

actual high correlation line is obser-

vable roughly up to k ¼ kmax, where the

mean peak value becomes equal to the

standard deviation �c, i.e.

exp �
kmax

kC

� �2 �2
ij

2

 !" #
¼ �c: ð16Þ

In fact, in Figs. 2(a) and 4(a) for cases of

�ij ¼ 0 and therefore where the mean

peak value should stay unity, the actual

high correlation lines are observed for

lysozyme up to kmax ffi 0.7 Å�1 and for

the HslUV complex up to kmax ffi 0.55 Å�1, where �c ffi 1:0
according to Fig. 6. In Fig. 4(b) for the case of the HslUV

complex with �ij = 1
, the actual high correlation line is

observable up to kmax ffi 0.3 Å�1, where �c ffi 0:6 according to

Fig. 6 and equation (16) is roughly satisfied.

From equation (16) and Fig. 6, we see that we can derive the

value of �ij from the measured length kmax of the high corre-

lation line. The longer the length kmax, the smaller the value of

�ij. From the value of �ij, we judge the similarity of a pair of

two-dimensional patterns. When judged similar, they are

classified into the same group. After the classification, two-

dimensional patterns classified into the same group are aver-

aged in order to improve the signal-to-noise ratio. Because this

averaging is done for patterns with slightly different directions

of the incident beam, the resolution of the resulting three-

dimensional structure will be affected. In order to attain the

highest possible resolution, we should adopt a strategy in

which we classify a pair of two-dimensional patterns into the

same group when their high correlation line reaches the

highest possible k region. Let us define kN (subscript N for

noise) as the lower bound of such a region. This quantity kN,

the limiting k value for correlation recognition, plays a central

role in the method of single-particle imaging developed in this

paper. In the case of Fig. 4(a) we judge that the high corre-

lation line extends up to such a region, where the line can no

longer be distinguished from the background. In the case of

Fig. 4(b) the line appears to have faded away before reaching

such a region. The limiting value kN, to be determined purely

operationally in real applications, appears more-or-less well

defined. However, we need to interpret the value of kN in a

more theoretical setting. Because it defines the lower bound of

the noisy region, it should be characterized by its value of �c.

From Figs. 4(a) and 4(b) we see that it should be between 0.6

and 1.0. As a modest estimate, we assume that kN corresponds

to the value of k at which �c ¼ 0:6 ffi exp �1=2ð Þ. Then, from

equation (16) we see that the corresponding value of �ij is

estimated to be within


G 	 kC=kN : ð17Þ
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Figure 5
Graph of the function of equation (14). The abscissa x and ordinate y
mean physically an expected number sN of photons arriving at a Shannon
pixel at k ¼ kN and �2:3kRL, respectively.

Figure 6
Plot of i kð Þ, the average of i kð Þ of equation (1) on the sphere of kj j ¼ k (black line), and �c of
equation (13) (blue line) for lysozyme (a) and the HslUV complex (b). The intensities assumed are
Ii ¼ 5� 1021 and 5� 1020 photons pulse�1 mm�2, respectively.



Let us now assume that a classification group of similar two-

dimensional patterns is constructed by a group of two-

dimensional patterns with �ij within this angle from a certain

reference two-dimensional pattern. Note that the average

distance (root-mean-square distance) between a pair of two-

dimensional patterns in this classification group is also given

by 
G. During the procedure of averaging, two-dimensional

patterns rotated by �ij around the origin are averaged. The

magnitude of displacement in k space by this rotation is given

by �ijk, with its maximum value being 
Gk. When this

magnitude is smaller than the correlation length kC of the

diffraction intensity density, the averaging procedure works to

attenuate the effect of the noise. When the product becomes

larger than kC, the averaging procedure works to destroy the

information in two-dimensional patterns. This means that the

structural information is contained in k only up to kR satisfying


GkR ¼ kC. Then, from equation (17), we see

kR ¼ kN: ð18Þ

A limiting photon count sN , which is an expected number of

photons arriving at a limiting pixel, a Shannon pixel at the

limiting k value, k ¼ kN , is given by sN ¼ �ss kN

� �
¼ C!i kN

� �
. In

equation (13), �2
cN� at k ¼ kN is given by �2

cN� ¼

2	�2
ckNL½1� kN�

	
2

� �2
�
1=2. This expression can be approxi-

mated as �2
cN� ffi 2:3kRL, because 1

	
kN is in most cases at

least a few times larger than �. In Fig. 5 for a graph of y ¼ g xð Þ,

x and y can also be interpreted as sN and � 2:3kRL, respec-

tively. Note that the normalized resolution, kRL, is the number

of independent structural descriptive elements along the

molecular length L. For a method of single-molecule imaging

to be useful, this number should be at least 20, hopefully 100.

Note that this number is determined mainly by the limiting

photon count sN . Fig. 5 shows this dependence. We see that, to

attain kRL ¼ 20–100, sN should be in the range of 0.25–0.08.

We have to measure and analyse such low-photon-number

data. Also this number highlights a high sensitivity of the

proposed method of analysis to extracting information from

noisy data.

In the above relation between the limiting photon count sN

and the normalized resolution kRL, the incident X-ray inten-

sity Ii is treated as an implicit variable parameter. To identify a

particular value of Ii to attain a resolution kR ¼ kN , we

remember the relation sN ¼ Iir
2
CE!i kN

� �
[equation (1)]. Then,

by defining a function inverse to the function g of equation

(14) as x ¼ g�1ðyÞ ¼ 1=½ð4þ yÞ
1=2
� 3�, equation (13) can be

transformed to

Ii ¼
g�1 2:3kRLð Þ

r2
CE!i kRð Þ

: ð19Þ

Fig. 7 shows the resolution kR as a function of intensity Ii for

lysozyme and the HslUV complex obtained by using this

equation. When there is more than one value of resolution for

a given value of Ii, the best value can be obtained. (The high

correlation line may become visible again in a high-k but low-

noise region after once becoming invisible in a low-k but high-

noise region.)

Since the solid angle of the range of one classification group

is given by 	
2
G, and the total solid angle of the direction of the

incident beam is 2	 because of the centrosymmetric property

of the three-dimensional diffraction intensity function, the

number of classification groups NG is given by

NG ¼
2	

	
2
G

¼ 2
kN

kC

� �2

¼ 2 kRLð Þ
2: ð20Þ

3. Placing two-dimensional patterns in the three-
dimensional wavenumber space: a method of finding
the relative orientation between two-dimensional
patterns

After two-dimensional patterns are classified by the method

described in the previous section, patterns classified into the

same group are averaged to reduce the noise. When signal-

enhanced patterns are obtained, they are to be placed in the

three-dimensional wavenumber space by finding their relative

orientations. The two-dimensional patterns exist on Ewald

spheres. Because all these Ewald spheres have the same radii

and their surfaces contain the origin k ¼ 0 of the wavenumber

space, any pair of Ewald spheres either contact at the origin or

have a circular intersection, which also contains the origin.

Shneerson et al. (2008) studied the problem of placing two-

dimensional patterns in the three-dimensional space by paying

attention only to an approximately straight portion of the

intersecting circles near the origin k ¼ 0. Yang et al. (2010)

refined the method of finding the tangential direction of the

intersecting circle at the origin k ¼ 0 by explicitly paying

attention to the curvature of the intersection. However, for the

placement problem they used the method of Singer &

Shkolnisky (2011) for cryo-electron microscopy in which only

information on tangential directions is used. However, it is

obvious that a relative orientation between a pair of Ewald

spheres can be determined once their common circle is iden-

tified. In this section we first develop a method of identifying
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Figure 7
Attainable resolution as a function of the incident X-ray intensity Ii

(photons pulse�1 mm�2) for lysozyme (dotted and solid right-hand lines)
and the HslUV complex (dotted and solid left-hand lines). When there is
more than one value of resolution for a given value of Ii, the best value
indicated by a solid line can be obtained.



an intersecting circle for a given pair of signal-enhanced two-

dimensional patterns s1 �; ’ð Þ and s2 �; ’ð Þ, and derive a math-

ematical expression for the relative orientation. Second, we

ask what is the necessary number of patterns to be averaged

for possible identification of common circles? The actual

construction of a single three-dimensional diffraction intensity

function from the data of relative orientations will be treated

in a different paper.

We assume that a pair of signal-enhanced two-dimensional

patterns s1 �; ’ð Þ and s2 �; ’ð Þ exist on Ewald spheres of as

yet unknown orientations, A 1ð Þ and A 2ð Þ. Because of the

centrosymmetric property of the three-dimensional diffraction

intensity function, any Ewald sphere A has its centrosym-

metric image characterized by �A. Therefore, Ewald sphere

A 1ð Þ should have an intersecting circle with each of the Ewald

spheres A 2ð Þ and �A 2ð Þ. This means that for any pair of two-

dimensional patterns, s1 �; ’ð Þ and s2 �; ’ð Þ, there exist two

common circles. A method of finding them is developed in

Appendix B and here we describe only the result. Each of the

two common circles exists as a circle of vanishing values in

each of two groups of plots, (a) s1 �; ’ð Þ � s2 �;�� ’ð Þ and (b)

s1 �; ’ð Þ � s2 �; ’��0ð Þ, where the parameters � and �0

generate each of the two groups, respectively. When the plot

(a) vanishes on a circle with its centre at � ¼ �; ’ ¼ � for a

certain parameter value �, the polar coordinates of the

centres of intersecting circles are �;�ð Þ on sA 1ð Þ �; ’ð Þ and

�;���ð Þ on sA 2ð Þ �; ’ð Þ. When the plot (b) vanishes on a

circle with its centre at � ¼ �0; ’ ¼ �0 for a certain parameter

value �0, the polar coordinates of the centres of intersecting

circles are �0;�0ð Þ on sA 1ð Þ �; ’ð Þ and �0;�0 ��0ð Þ on

sA 2ð Þ �; ’ð Þ. Then, the Euler angle of the relative orientation

A ¼ A 1ð Þ�1A 2ð Þ is given by

� ¼ ��� ¼ �0 ��0 � 	; � ¼ 	� 2� ¼ 2�0;

� ¼ 	�� ¼ ��0: ð21Þ

Thus, the same set of Eulerian angles �; �; �ð Þ is now deter-

mined from each of the intersecting circles between Ewald

spheres A 1ð Þ and A 2ð Þ, and between Ewald spheres A 1ð Þ and

�A 2ð Þ. Even though the result is redundant, the actual

procedures of finding vanishing circles on plots (a) and (b) are

much influenced by experimental noise. In this situation,

finding the same quantity simultaneously by the two methods

is a desirable numerical procedure.

Fig. 8 shows an example of how circles of vanishing values

become visible as the number of averaging patterns is

increased. In the case of this example for the HslUV complex,

in which the limiting photon count sN is 0:13, we see by

inspection that averaging over about 61 patterns is necessary

for the identification. This process has been done for lysozyme

and the HslUV complex both for a series of values of the

incident X-ray intensity. It has been found that a product of

the number NA of necessary patterns and the limiting photon

count sN (therefore, the intensity Ii of the incident X-ray) is

constant in either ‘molecule’. The analysis described in

Appendix C indicates that the product NAsN must be 8 or

larger for common circles to be identified. This is exactly the

number observed in the case of Fig. 8. Therefore, the neces-

sary number of patterns is given by

NA ffi 8=sN: ð22Þ

Table 1 summarizes the results obtained as applied to the two

‘molecules’.

4. Summary and conclusion

Two aspects of a method of single-particle imaging belonging

to the path A, group 1 methodology have been developed.

First, a new, improved method has been developed for

computational analyses and procedures to arrange a set of

many experimentally measurable two-dimensional diffraction

intensity patterns in the three-dimensional wavenumber

space. Second, explicit theoretical expressions have been

derived for important experimental parameters in terms of the

incident X-ray intensity and two types of quantities char-

acterizing a target.

The number Nmeasure of two-dimensional patterns to be

measured is given by the product NANG of the number of

classification groups NG and the average number of two-

dimensional patterns NA to be averaged in each group for

noise reduction. The number Ncompare of pairs of two-

dimensional patterns to be analysed is given by NAN2
G,

because the detection of similarity of patterns is to be carried

out for each of the pairs, one from patterns representing each
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Table 1
Resolution and necessary number of patterns and classification calculations expected for two sample ‘molecules’.

Lysozyme HslUV complex

Correlation length of intensity data 1=kC ¼ L 60 Å 200 Å
Assumed intensity of incident beam Ii (photons pulse�1 mm�2) 5 � 1021 1022 5 � 1020 1021

Noise level becomes high at kN (Å�1) 0.48 0.99 0.28 0.55
Photon number sN at kN 0.19 0.12 0.13 0.08
Resolution 1=kR ¼ 1=kN (Å) 2.08 1.01 3.57 1.82
Range of classification group 
G ¼ kC=kN (
) 1.99 0.96 1.02 0.52
Number of classification group NG ¼ 2=
2

G 1.7 � 103 7.1 � 103 6.3 � 103 2.5 � 104

Number of two-dimensional patterns to be averaged NA ¼ 8=sN 41 63 61 100
Necessary number of two-dimensional patterns Nmeasure ¼ NANG 6.7 � 104 4.5 � 105 3.8 � 105 2.4 � 106

Number of classification calculations Ncompare ¼ NAN2
G 1.1 � 108 3.2 � 109 2.4 � 109 5.8 � 1010



group and the other from all measured patterns. We derived

theoretical expressions for the two parameters, NG and NA.

Concerning the first aspect, we have improved a hitherto

proposed method for judging whether or not an arbitrary pair

of two-dimensional patterns are similar enough to belong to

the same classification group. Also, we developed methods of

finding common intersecting circles between an arbitrary pair

of noise-reduced two-dimensional patterns, and thereby rela-

tively locating them in the three-dimensional wavenumber

space. After locating many two-dimensional diffraction

patterns properly in the wavenumber space, we have to

construct a single three-dimensional diffraction intensity

function. This problem, as well as the problem of application

of the phase retrieval procedure to such a three-dimensional

function, will be treated in a different paper.

The judgment of similarity is based on a two-dimensional

correlation pattern for each pair of two-dimensional diffrac-

tion intensity patterns. For the calculation of correlation

patterns, a new normalization of measurable two-dimensional

intensity patterns is employed, thereby enabling one to

enhance the sensitivity of judgment to high-angle k values, and

eventually to improve attainable space resolution.

A two-dimensional intensity pattern

depends on the direction of the

incident X-ray beam with respect to the

molecule-fixed coordinate system and

an angle of rotation of the detector

plane placed perpendicularly to the

beam axis. When an angle �ij between

the directions of the incident beam for

a pair of two-dimensional intensity

patterns is small, a high correlation line

is observed in the two-dimensional

correlation pattern as a straight line

extending radially from the centre. The

angle of the line in the correlation

pattern gives a relative angle of rotation

of the detector plane. The intensity of a

high correlation line is unity near k ¼ 0

and becomes weaker at higher angles.

The intensity reduces faster for larger

values of �ij.

The background of correlation

patterns other than the high correlation

line is characterized as a pattern of

random appearance reflecting the irre-

gular three-dimensional structures of

biopolymers at the atomic level super-

imposed with the quantum noise.

Owing to the deliberately adopted,

new normalization of measurable two-

dimensional intensity patterns, the

mean value of the distribution in the

background of two-dimensional corre-

lation patterns turns out to vanish. The

standard deviation �c of the distribution

around its vanishing mean becomes

globally, but not monotonically, larger

as k becomes larger. When the standard

deviation �c becomes larger than the

intensity of a high correlation line, the

latter becomes no longer recognizable.

The recognizable length of a high

correlation line becomes longer as the

value of �ij becomes smaller. The latter

can be determined from the former.

When the value of �ij is smaller than a

certain value, say, 
G (therefore, when
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Figure 8
Plots for detecting an intersecting circle between a pair of two-dimensional patterns for the case of
the HslUV complex and for the incident X-ray intensity Ii ¼ 5� 1020 photons pulse�1 mm�2. By
careful examination of the plot, we see that intersecting circles become visible when averaging of 61
or more patterns is done in this case. In the bottom panels the intersecting circles are highlighted.



the recognizable length of the corresponding high correlation

line becomes longer than a certain value, say, kN), we classify

the pair into the same group. To attain the best resolution, we

should employ the largest possible value for kN . Operationally

we determine the value of kN, the limiting k value for corre-

lation recognition, as the lower bound of the noise-dominant k

region in two-dimensional correlation patterns. Such a value

kN can be characterized theoretically as the value of k at which

the standard deviation �c of the background distribution is 0:6.

An analytic expression, equation (13), for the standard

deviation is derived which is approximately a function of the

wavenumber normalized by the Shannon length of the target

molecule, i.e. kL, and an expected photon count s by a pixel at

the position of the wavenumber k. The quantity kN plays a

central role in the method of analysis developed in this paper.

It is shown that the structural resolution kR attainable by this

method is given by kN.

In the method of identification of a high correlation line,

upon which judgment of similarity of a pair of two-

dimensional intensity patterns is based, effective information

is extracted from the very noisy data in the range of wave-

numbers up to the limiting value kN where the value of the

standard deviation �c is 0:6. From the analytic expression for

�c, we can derive the limiting photon count sN, an expected

photon count at a limiting pixel, approximately as a function of

the normalized resolution kRL ¼ kNL (Fig. 5). For a method of

structure determination to be useful, the value of the

normalized resolution should be in the range of 20–100. The

corresponding value of the limiting photon count sN turns out

to be in the range of 0.25–0.08. The proposed method of

analysis is sufficiently sensitive to enable one to extract

information from such low-photon-count noisy data. This high

sensitivity has been attained by employing a new correlation

function. When the molecular length L and the radial

diffraction intensity density function i kð Þ are known, the above

relation between the normalized resolution kRL and the

limiting photon count sN ¼ Iir
2
CE!i kN

� �
can be transformed to

a relation giving the intensity Ii of the incident beam to be

used to attain a resolution kR.

The angle 
G to define a range of classification groups is

given by an inverse of the normalized limiting wavenumber,

kNL
� ��1

. As a result, the number of classification groups NG is

given by 2 kRLð Þ
2.

A method of identifying common circles between an arbi-

trary pair of noise-reduced two-dimensional patterns is

developed. For an arbitrary Ewald sphere, there exists a

conjugate Ewald sphere which is centrosymmetric with respect

to the origin of the wavenumber space. In the proposed

method, when a common circle between two-dimensional

patterns A and B is searched, another common circle is

searched at the same time between two-dimensional patterns

A and B0, where B0 is a two-dimensional pattern on an Ewald

sphere conjugate to the one on which B exists. The average

number of two-dimensional patterns NA to be averaged in

each group for identification of common circles has been

shown to be given in terms of the limiting photon count sN

by 8=sN.

The obtained theoretical expressions are used to evaluate

values of important parameters for the two sample ‘molecules’

by assuming, respectively, two typical intensities of the inci-

dent beam. The results are shown in Table 1. We should note

the very low limiting photon counts, highlighting the strength

of the method developed here. We should also note that the

predicted attainable resolutions are remarkably high. This is

partly due to the strength of the method of analysis developed

here, but also due to the assumed high intensities of the

incident beam. The assumed values of intensity in Fig. 7 and

Table 1 are in the range of around 1021 photons pulse�1 mm�2,

which is far larger than the peak value of 1.6 � 1016

photons pulse�1 mm�2 reported in the recent experiment

(Seibert et al., 2011) carried out at the Linac Coherent Light

Source (LCLS). Because the X-ray beam diameter reported in

the experiment at LCLS is about 10 mm and a new technology

(Mimura et al., 2010) is now available to focus it down to

10 nm, the values assumed in this paper appear realistic. Since

we developed the analysis in this paper under a tentative

assumption that damage processes can be neglected, the

indicated intensity is the lower bound to attain a targeted

resolution. We are now carrying out a study of the damage

processes to assess the upper bound of employable intensity.

The number of two-dimensional patterns to be measured in

Table 1 is not small, but appears tractable for real experiments.

At the same time we should note that the number of classifi-

cation calculations is not small.

APPENDIX A
Relations between molecular orientation and the Ewald
sphere

We define two right-handed coordinate systems, one fixed to

the molecule and the other fixed to the experimental detector.

They are defined, respectively, in terms of a set of mutually

orthogonal unit vectors a1; a2; a3ð Þ fixed to the molecule and in

terms of another set of mutually orthogonal unit vectors

b1; b2; b3ð Þ fixed to the detector. The position of any point in

the molecule can be expressed either in terms of coordinates

x ¼ x1; x2; x3ð Þ
t (here the superscript t means transpose)

in the molecule-fixed coordinate system (MFCS) as

a1x1 þ a2x2 þ a3x3 ¼ a1; a2; a3ð Þx or in terms of coordinates

y ¼ y1; y2; y3ð Þ
t in the detector-fixed coordinate system

(DFCS) as b1y1 þ b2y2 þ b3y3 ¼ b1; b2; b3ð Þy. Thus

a1; a2; a3ð Þx ¼ b1; b2; b3ð Þy: ð23Þ

The relative orientation between the MFCS and DFCS can

be described in terms of a 3 � 3 orthogonal matrix A as

b1; b2; b3ð Þ ¼ a1; a2; a3ð ÞA: ð24Þ

This is a shorthand notation for

bi ¼
P3

j¼1

ajaji; i ¼ 1; 2; 3; ð25Þ

where aji is an element of the matrix A. This is an orthogonal

matrix, i.e. A�1
¼ At. By introducing equation (24) into

research papers

376 Atsushi Tokuhisa et al. � Classifying X-ray laser diffraction patterns Acta Cryst. (2012). A68, 366–381



equation (23), we have the following relation between coor-

dinates in the two coordinate systems:

x ¼ Ay: ð26Þ

It is convenient to express the orthogonal matrix in terms of a

Eulerian angle �; �; �ð Þ as

A ¼ A3 ��ð ÞA2 ��ð ÞA3 ��ð Þ; ð27Þ

A�1
¼ A3 �ð ÞA2 �ð ÞA3 �ð Þ; ð28Þ

where

A3ð�Þ ¼
cos� � sin � 0

sin � cos� 0

0 0 1

0
@

1
A; ð29Þ

A2ð�Þ ¼
cos� 0 sin �

0 1 0

� sin � 0 cos �

0
@

1
A: ð30Þ

The range of variation of the Eulerian angle is taken as

follows:

0 � �< 2	; 0 � � � 	; 0 � � < 2	: ð31Þ

Molecular structure is described by its electron density:

� xð Þ ¼ � x1; x2; x3ð Þ: ð32Þ

When the molecule is in the orientation described by an

orthogonal matrix A with respect to the detector, the electron

density in the DFCS is given by

�A yð Þ ¼ �A y1; y2; y3ð Þ ¼ � xð Þ ¼ � Ayð Þ: ð33Þ

The structure factor is calculated in the MFCS as

F kð Þ ¼
R

dx � xð Þ exp �2	iktxð Þ: ð34Þ

The structure factor in the DFCS is given by

FA hð Þ ¼
R

dy �A yð Þ exp �2	ihtyð Þ

¼
R

dx � xð Þ exp �2	i Ahð Þtx
� 


¼ F Ahð Þ: ð35Þ

This equation has the same structure as equation (33), indi-

cating that the electron density and the structure factor

behave in the same way for rotation. It follows from this that

the wavenumber vectors k in the MFCS and h in the DFCS are

related to each other similarly as in equation (26):

k ¼ Ah: ð36Þ

Experimentally, the diffracted X-rays from a single mole-

cule in a certain specific orientation are measured by a two-

dimensional detector as a continuous diffraction pattern. This

diffraction pattern is given by the squared modulus of the

structure factor on the following Ewald sphere in the wave-

number space in the DFCS,

h� ��1b3

�� ��2 ¼ ��2: ð37Þ

Here � is the wavelength of X-rays used in the experiment.

The incident X-rays are assumed to proceed to the negative

direction of the third axis b3 of the DFCS. The first and second

axes are taken on the surface of the detector. Equation (37)

describes a sphere in the h space. The surface of the sphere

contains the origin of the wavenumber space and its centre is

located at ��1b3.

We now introduce a polar coordinate �; ’ð Þ on the surface of

this Ewald sphere by

h �; ’ð Þ ¼ ��1 E�A3 ’þ 	ð ÞA2 �ð Þ
� 


e3

¼ ��1 sin � cos ’; sin � sin ’; 1� cos �ð Þ
t; et

3 ¼ 0; 0; 1ð Þ:

ð38Þ

The origin � ¼ 0; ’ ¼ 0 of the polar coordinate corresponds to

the origin h ¼ 0 of the wavenumber space. This polar coor-

dinate system is adopted so that when the detector is viewed

from the direction of the incident X-rays, the detector’s

positive horizontal and vertical axes coincide with the direc-

tions of ’ ¼ 0 and ’ ¼ 	=2, respectively. The observable

diffraction pattern is given by equation (1) as

sA �; ’ð Þ ¼ C! FA h �; ’ð Þ½ �
�� ��2: ð39Þ

Because the orthogonal matrix A can be specified by a

Eulerian angle �; �; �ð Þ, we sometimes write

sA �; ’ð Þ ¼ s �; �; �; �; ’ð Þ: ð40Þ

We also identify various Ewald spheres by their corresponding

orthogonal matrix A.

Let us now locate the Ewald sphere in the MFCS. It is given

by

k ¼ Ah �; ’ð Þ

¼ A3 ��ð ÞA2 ��ð ÞA3 ��ð Þh �; ’ð Þ

¼ A3 ��ð ÞA2 ��ð Þh �; ’� �ð Þ: ð41Þ

The last equality means

s �; �; �; �; ’ð Þ ¼ s 0; �; �; �; ’� �ð Þ: ð42Þ

This equation means that the Ewald spheres corresponding to

�; �; �ð Þ and 0; �; �ð Þ are essentially the same spheres giving

the same surface. The former is obtained from the latter by

rotating the latter anticlockwise around its third axis by

angle �.

Here, the different ways in which a Eulerian angle �; �; �ð Þ

appears in the two different coordinate systems may be worth

noting. In the DFCS, a set of three angles describes the spatial

orientation of the molecule. In the MFCS, the angles ��;��ð Þ

are nothing but the polar coordinates of the incident X-ray

beam axis b3 and the angle � describes the angle of rotation of

the detector around this beam axis. Because of these clear

meanings of the Eulerian angles in the MFCS, we employ

them to describe molecular orientations rather than often

mathematically better behaved quaternions.

Equation (42) suggests an experimental procedure of clas-

sifying various observable diffraction patterns s �; �; �; �; ’ð Þ

into groups only with respect to values of � and �. Those with

the same values of � and � but with different values of � are to

be classified into the same group.

Because the electron density � xð Þ is a real function, the

structure factor satisfies the relation
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F kð Þ� ¼ F �kð Þ: ð43Þ

Because of this relation, the same diffraction pattern is

observed on a pair of different Ewald spheres. From equations

(40), (39), (35) and (43) we have

s �; �; �; �; ’ð Þ ¼ sA �; ’ð Þ ¼ C! FA h �; ’ð Þ½ �
�� ��2

¼ C! F Ah �; ’ð Þ½ �
�� ��2 ¼ C! F �Ah �; ’ð Þ½ �

�� ��2:
ð44Þ

The last equation indicates that two Ewald spheres, char-

acterized by rotation matrices A and �A, respectively, exist

always in a pair. They occupy positions centrosymmetric to

each other with respect to the origin of the wavenumber space,

and they are in touch with each other at the origin. When we

introduce a right-handed coordinate system to the Ewald

sphere A with its origin at the centre of the sphere, the

corresponding coordinate system of the centrosymmetric

Ewald sphere �A is now left handed. This fact is understood

as the two Ewald spheres having different handedness or

parity.

APPENDIX B
Finding the relative orientation between a pair of
unknown orientations from their corresponding
diffraction intensity patterns

Real, experimentally observable diffraction patterns are

subject to severe quantum noise. To cope with such noise, the

same patterns should be measured many times and their

means should be calculated to reduce the noise. In the

following, the quantity of equation (39) is used under the

assumption that such averaging has already been done so that

the effect of noise can be neglected.

Let the two unknown orientations be given by

A ið Þ ¼ A3 ��ið ÞA2 ��ið ÞA3 ��ið Þ; i ¼ 1; 2: ð45Þ

The corresponding Ewald spheres A ið Þ and �A ið Þ are given,

respectively, by

k i; �; ’ð Þ ¼ A ið Þh �; ’ð Þ; i ¼ 1; 2 ð46Þ

and

k0 i; �; ’ð Þ ¼ �A ið Þh �; ’ð Þ; i ¼ 1; 2: ð47Þ

Because all these Ewald spheres have the same radii and their

surfaces contain the origin k ¼ 0 of the wavenumber space,

they either contact at the origin or have a circular intersection,

which also contains the origin.

Let us now study the intersecting circle between Ewald

spheres A 1ð Þ and Að2Þ. Let �1; ’1ð Þ on the first Ewald sphere

A 1ð Þ and �2; ’2ð Þ on the second Ewald sphere A 2ð Þ be the

same point on the intersecting circle,

A 1ð Þh �1; ’1ð Þ ¼ A 2ð Þh �2; ’2ð Þ: ð48Þ

Therefore, by setting

A ¼ A 1ð Þ�1A 2ð Þ; ð49Þ

we have

h �1; ’1ð Þ ¼ Ah �2; ’2ð Þ; h �2; ’2ð Þ ¼ A�1h �1; ’1ð Þ: ð50Þ

These equations mean that the polar coordinates �1; ’1ð Þ on

Ewald sphere A 1ð Þ for points on the intersecting circle with

Ewald sphere A 2ð Þ are also polar coordinates on Ewald sphere

E for points on the intersecting circle with Ewald sphere A.

Similarly, the polar coordinates �2; ’2ð Þ on Ewald sphere A 2ð Þ

for points on the intersecting circle with Ewald sphere A 1ð Þ

are also polar coordinates on Ewald sphere E for points on the

intersecting circle with Ewald sphere A�1.

We now calculate the intersecting circle between Ewald

spheres E and A, and that between Ewald spheres E and A�1.

We assume that A is given by equation (27). The centres of the

three Ewald spheres, OE, OA and OA�1 , are given in the MFCS

by

OE ¼ �
�1e3;

OA ¼ AOE ¼ �
�1Ae3 ¼ �

�1 � cos � sin �; sin � sin�; cos �ð Þ
t;

OA�1 ¼ A�1OE ¼ �
�1A�1e3 ¼ �

�1 cos � sin �; sin � sin �; cos �ð Þ
t:

ð51Þ

Therefore

OA �OE

�� �� ¼ OA�1 �OE

�� �� ¼ 2��1 sin
�

2
: ð52Þ

Let the centre of the intersecting circle between Ewald

spheres E and A on Ewald sphere E be CA. Similarly, let the

centre of the intersecting circle between Ewald spheres E and

A�1 on Ewald sphere E be CA�1. They are given by

CA �OE ¼ �
�1 OA �OEð Þ= OA �OE

�� ��
¼ ��1 � cos � cos

�

2
; sin � cos

�

2
;� sin

�

2

� �t

;

CA�1 �OE ¼ �
�1 OA�1 �OE

� �
= OA�1 �OE

�� ��
¼ ��1 cos� cos

�

2
; sin � cos

�

2
;� sin

�

2

� �t

:

ð53Þ

We now proceed to describe a procedure to find the inter-

secting circles for a given pair of experimental diffraction

patterns sA 1ð Þ �; ’ð Þ and sA 2ð Þ �; ’ð Þ. When we move clockwise

along the intersecting circle on the Ewald sphere A 1ð Þ, it

appears as an anticlockwise motion along the intersecting

circle on the Ewald sphere A 2ð Þ. Therefore, we calculate the

following quantity for all assumed values of � in the range of

0; 2	½ �:

sA 1ð Þ �; ’ð Þ � sA 2ð Þ �;�� ’ð Þ: ð54Þ

This quantity should vanish on a certain circle for a certain

value of �. Because the intersecting circle contains the polar

origin � ¼ 0; ’ ¼ 0, it can be uniquely specified by the polar

coordinate of its centre. When the quantity of equation (54)

vanishes on a circle with its centre at � ¼ �; ’ ¼ �, the polar

coordinates of the centres of intersecting circles are �;�ð Þ on

sA 1ð Þ �; ’ð Þ and �;���ð Þ on sA 2ð Þ �; ’ð Þ. These polar coordi-

nates of the centres are to be compared with equation (53).

Therefore,
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sin � cos � ¼ � cos � cos
�

2
; sin � sin � ¼ sin � cos

�

2
;

sin � cos ���ð Þ ¼ cos � cos
�

2
; sin � sin ���ð Þ ¼ sin� cos

�

2

8><
>: :

ð55Þ

From these relations we have a half of equation (21) in the

main text.

Let us now proceed to study the intersecting circle between

Ewald spheres A 1ð Þ and �A 2ð Þ. By following similar proce-

dures as above we have the following relations from equation

(47):

h �1; ’1ð Þ ¼ �Ah �2; ’2ð Þ; h �2; ’2ð Þ ¼ �A�1h �1; ’1ð Þ: ð56Þ

By introducing similar quantities and following similar

procedures, we have the following results:

C�A �OE ¼ �
�1 O�A �OEð Þ

	
O�A �OE

�� ��
¼ ��1 cos � sin

�

2
;� sin � sin

�

2
;� cos

�

2

� �t

;

C�A�1 �OE ¼ �
�1 O�A�1 �OE

� �	
O�A�1 �OE

�� ��
¼ ��1 � cos� sin

�

2
;� sin � sin

�

2
;� cos

�

2

� �t

:

ð57Þ

To find the intersecting circle between Ewald spheres A 1ð Þ

and �A 2ð Þ for a given pair of experimental diffraction

patterns sA 1ð Þ �; ’ð Þ and sA 2ð Þ �; ’ð Þ, we calculate the following

quantity for all assumed values of �0 in the range of 0; 2	½ �:

sA 1ð Þ �; ’ð Þ � sA 2ð Þ �; ’��0ð Þ: ð58Þ

When we move clockwise along the intersecting circle on

Ewald sphere A 1ð Þ, it appears as an anticlockwise motion

along the intersecting circle on Ewald sphere �A 2ð Þ. Because

Ewald spheres A 2ð Þ and �A 2ð Þ have opposite parities, this

motion appears as a clockwise motion along its centrosym-

metric circle on Ewald sphere A 2ð Þ. This is the reason why the

sign in front of ’ in sA 2ð Þ in equation (58), unlike in equation

(54), is now plus. When the quantity of equation (58) vanishes

on a circle with its centre at � ¼ �0; ’ ¼ �0, the polar coor-

dinates of the centres of intersecting circles are �0;�0ð Þ on

sA 1ð Þ �; ’ð Þ and �0;�0 ��0ð Þ on sA 2ð Þ �; ’ð Þ. These polar coor-

dinates are to be compared with equation (57). Therefore

sin �0 cos �0 ¼ cos � sin
�

2
; sin �0 sin �0 ¼ � sin � sin

�

2
;

sin �0 cos �0 ��0ð Þ ¼ � cos� sin
�

2
; sin �0 sin �0 ��0ð Þ ¼ � sin� sin

�

2
:

8><
>:

ð59Þ

From these relations we have another half of equation (21) in

the main text.

APPENDIX C
Derivation of equations (11), (12), (13) and (22)

The mean of the quantities of equations (6) and (7) with

respect to the Poisson distribution is given by

�ij �; �ð Þ

 �

¼
1

N�

XN��1

l¼0

s i; �;
2	l

N�

� �
s j; �;

2	l

N�

þ �

� �

¼
1

2	

Z2	
0

d’ s i; �; ’ð Þs j; �; ’þ �ð Þ

¼
C2!2

2	

Z2	
0

d’ i 0; �i; �i; �; ’ð Þ

� i 0; �j; �j; �; ’þ �þ �i � �j

� �
:

ð60Þ

sQ i; �ð Þ

 �

¼
1

N�

XN��1

l¼0

s i; �;
2	l

N�

� �
¼

C!

2	

Z2	
0

d’ i i; �; ’ð Þ: ð61Þ

When the quantity of equation (60) is averaged over the

structure irregularity distribution, we have from equation (9)

and the relation i2

 �
¼ 2 ih i2 due to the exponential distribution

�ij �; �ð Þ

 �
 �

¼ C!i
� �2

1þ
1

2	

Z2	
0

d’ exp �
k
 ’ð Þ

kC

� �2
( )0

@
1
A;
ð62Þ

where 
 ’ð Þ is an angle between the two k vectors given

explicitly as follows according to equation (41):

ki ¼ A ið Þh �; ’ð Þ ¼ A3 ��ið ÞA2 ��ið ÞA3 ��ið Þh �; ’ð Þ;

kj ¼ A jð Þh �; ’þ �ð Þ ¼ A3 ��j

� �
A2 ��j

� �
A3 ��j

� �
h �; ’þ �ð Þ:

ð63Þ

When the two k vectors are always significantly different,

equation (62) reduces to

�BG �; �ð Þ

 �
 �

¼ C!�ii
� �2

: ð64Þ

The average of the quantity of equation (61) over the structure

irregularity distribution is given by

sQ i; �ð Þ

 �
 �

¼ C!i: ð65Þ

By introducing an approximation

cij �; �ð Þ

 �
 �

ffi
�ij �; �ð Þ

 �
 �

sQ i; �ð Þ

 �
 �

sQ j; �ð Þ

 �
 �� 1; ð66Þ

we see from equations (64) and (65) that cBG �; �ð Þ

 �
 �

vanishes

as mentioned in the main text. Also, from equations (62), (65)

and (66) we have

cij �; �ð Þ

 �
 �

¼
1

2	

Z2	
0

d’ exp �
k
 ’ð Þ

kC

� �2
( )

: ð67Þ

This is an expected expression when all background features

having random appearance due to the quantum noise and the

structure irregularity distribution are erased from such high

correlation lines as observed in Figs. 2(a) and 2(b).

We now proceed to simplify equation (67). At first we

calculate 
 ’ð Þ, an angle between the two vectors of equation
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(63). The magnitude of the two vectors is given by equation

(2). To calculate the inner product between the two vectors, we

introduce the relative Eulerian angle �ij; �ij; �ij

� �
by

A ið Þ
�1A jð Þ ¼ A3 �ið ÞA2 �ið ÞA3 �ið ÞA3 ��j

� �
A2 ��j

� �
A3 ��j

� �
¼ A3 ��ij

� �
A2 ��ij

� �
A3 ��ij

� �
: ð68Þ

Here �ij is the angle between beam directions given by

equation (5). In terms of the relative Eulerian angle, we have

cos 
 ’ð Þ ¼
kt

ikj

k2
¼ sin2 �

2
cos�ij þ sin

�

2
cos

�

2
sin �ij

� cos ~’’þ ~��ð Þ � cos ~’’½ � þ cos2 �

2

� cos �ij cos ~’’þ ~��ð Þ cos ~’’þ sin ~’’þ ~��ð Þ sin ~’’
� 


;

~’’ ¼ ’þ �ij; ð69Þ

~�� ¼ �� �̂�ij; �̂�ij ¼ �ij þ �ij: ð70Þ

The quantity of equation (67) is to be obtained by substituting


 ’ð Þ from this equation. Let us write the result of the inte-

gration with respect to ’ in equation (67) by writing three

independent variables explicitly as c k=kC; ~��; �ij

� �
 �
 �
. Here,

remember that � and k are related by equation (2). Even

though it is difficult to derive an analytic form of this quantity,

we can calculate it numerically. Fig. 9(a) shows an example of

this quantity obtained numerically. For practical applications

we want to have an analytic form of this quantity even when it

may be somewhat approximate. To derive an approximate but

analytic form we at first notice that the integrand of equation

(67) has a significant contribution only when ~�� and �ij are

small. By using this fact we Taylor-expand both sides of

equation (69) in terms of 
 ’ð Þ, ~�� and �ij, and retain only up to

the second-order terms to obtain


 ’ð Þ2 ¼ ~��2cos2 �

2
þ �ij

2 1� cos2 �

2
sin2 ~’’

� �
þ ~���ij sin � sin ~’’: ð71Þ

The quantity of equation (67), obtained

numerically by using this expression,

was found to have almost no difference

from c k=kC; ~��; �ij

� �
 �
 �
, meaning that

equation (71) is a very good approx-

imation to equation (69). Even for this

expression of equation (71), the deri-

vation of an analytic form for the inte-

gral of equation (67) is difficult. In this

situation we introduce a drastic

approximation of replacing the quantity

of equation (71) by its mean


2

 �
¼ ~��2 1� sin2 �

2

� �
þ
�ij

2

2
1þ sin2 �

2

� �
;

ð72Þ

and use the value of 
 thus obtained in

equation (67). Writing the result thus obtained as

c1 k=kC; ~��; �ij

� �
 �
 �
we have

c1 k=kC; ~��; �ij

� �
 �
 �
¼ exp

�
�

k

kC

� �2�
~��2 1� sin2 �

2

� �

þ
�2

ij

2
1þ sin2 �

2

� ���
: ð73Þ

For practical applications we can approximate this expression

further as

c2 k=kC;�; �
� �
 �
 �

¼ exp �
k

kC

� �2

~��2
þ
�2

ij

2

� �" #
: ð74Þ

Fig. 9(b) is a plot of this quantity. By comparing it with Fig.

9(a), we see that this simple analytic form is a reasonably good

approximation.

Equation (74) is equation (11) of the main text. Equation

(12) can be obtained from equations (68) and (70) by

assuming that �ij and therefore both �i � �j

�� �� and �i � �j

�� �� are

small quantities of the same order.

For the purpose of deriving equation (13), we evaluate the

standard deviations of the quantities appearing in equations

(6) and (7). After some calculations they are obtained as

�2
�ij
¼ �ij

� �2
D ED E

� �ij

� �
 �
 �2
¼

1

N�

3 C!i
� �4

þ 4 C!i
� �3

þ C!i
� �2

h i
;

�2
sQ
¼ sQ

� �2
D ED E

� sQ

� �
 �
 �2
¼

1

N�

C!i
� �2

þ C!i
� �h i

: ð75Þ

During the derivation of this equation we assumed that the

values of the diffraction intensity density at the neighbouring

Shannon pixels on a circle are not correlated. This means that

the distance in the wavenumber space between the neigh-

bouring Shannon pixels must be larger than the correlation

length kC of equation (10). Because the correlation fades

quickly beyond kC, we assume that equation (75) still holds for

this distance. Therefore we have equation (15). The standard

deviation of the correlation pattern is then given by
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Figure 9
The quantity of equation (67) shown as a function of ~�� and �ij by assuming k ¼ 0:174 Å�1 [value
corresponding to � = 10
 and � ¼ 1 Å in equation (2)] and 1=kC ¼ 200 Å (the value for the HslUV
complex). (a) Exact but numerically calculated value. (b) Value according to the approximate but
analytic expression of equation (74).



�2
c ¼

2�2
�ssQ

sQ


 �
 �2 þ �2
�ij

�ij


 �
 �2 ; ð76Þ

from which we have equation (13).

We now proceed to derive equation (22). We study how the

value of the product NAsN is determined for common circles to

be identified. At first we note that a sum of Poisson distribu-

tions is a Poisson distribution. Therefore, a sum of NA two-

dimensional patterns is equal to one sample of a two-

dimensional pattern whose expected photon number is given

by NAs kð Þ, which we shall write as � in equation (77) below. We

shall also write the mean of � on a sphere k ¼ kj j as �. Now

we consider the distribution of values of the difference

D ¼ s1 �; ’ð Þ � s2 �; ’
0ð Þ (1) on and (2) off the common circle.

(1) On the common circle, D is given by a difference of two

integers, both given by a Poisson distribution. Its mean

vanishes of course. The mean of its absolute value may be

estimated approximately as

Dj jon


 �
 �
ffi D2


 �
 �� �1=2
¼ 2�ð Þ1=2: ð77Þ

(2) Off the common circle, the values of s1 �; ’ð Þ and s2 �; ’
0ð Þ

are both distributed according to the two distributions, the

Poisson distribution and the exponential distribution. The

composite distribution is given by

P nð Þ ¼ 1� 
ð Þ
n; 
 ¼
�

1þ �
: ð78Þ

For this distribution, the mean of the absolute value is esti-

mated approximately as follows:

Dj joff


 �
 �
ffi D2


 �
 �� �1=2
¼ 2�þ 2�2
� �1=2

: ð79Þ

Let us assume that, for clear recognition of Dj jon out of Dj joff,

the following condition must be satisfied up to k ¼ kN :

Dj jon


 �
 �
� Dj joff


 �
 �
=3, which means

� � 8: ð80Þ

Equation (22) follows directly from this equation.
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