
MS14-P7 High pressure X-ray single-crystal and powder
diffraction of SF6 up to 14 GPa. Nadine Rademacher,
Lkhamsuren Bayarjargal, Wolfgang Morgenroth, Alexandra
Friedrich, Björn Winkler, Institute of Geosciences, Goethe
University, Frankfurt am Main, Germany
E-mail: rademacher@kristall.uni-frankfurt.de

It is well known that at low temperatures the molecular
crystal SF6 exists in an orientationally disordered
body-centered cubic phase (from 90 – 230 K) and an ordered
monoclinic phase (below 90 K).[1] The high-pressure
behaviour has so far been only investigated by Raman
spectroscopy with pressures up to 10 GPa.[2] Sasaki et al.
propose a phase transtition at 0.25 GPa from liquid SF6 to the
so-called solid I phase and a second phase transition at
1.8 GPa to the solid II phase. Moreover the assumption is
made that the solid I phase crystallizes in the bcc and the solid
II phase in the monoclinic structure.

This study presents an in-situ crystal-structure
determination of SF6 in diamond anvil cells (DAC) up to
14 GPa. In order to ensure quasi-hydrostatic conditions, a
mixture of 20 vol% SF6 in helium was loaded into the DAC.
During compression of the gas mixture, SF6 separated from
the He at around 0.5 GPa. Crystal growth was observed at
2 GPa and after a pressure increase to 4 GPa SF6 single
crystals were grown using an external heating set-up.[3]

In-situ Raman measurements show the typical SF6 modes and
indicate a phase transition between 1.6 and 2.2 GPa consistent
with earlier results.[2] X-ray diffraction experiments have
been performed at the Extreme Conditions Beamline P02.2 at
PETRA III.[4] Single-crystal and powder data were measured
using 43 keV radiation at four different pressure points:
1.5 GPa, 1.9 GPa, 4 GPa and 14 GPa. At 1.5 and 1.9 GPa the
structure was determined to be the proposed orientationally
disordered body-centered cubic and at 4 GPa SF6 crystallizes
in the monoclinic structure. After further compression to
14 GPa only powder rings were observed and the monoclinic
phase is still stable.

Fig. 1: Left: Phase separation of SF6 and He in the DAC at 0.4 GPa.
Middle: Solid SF6 at 1.5 GPa. Right: SF6 single crystals at 4.4 GPa.
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We used time resolved sample quenching, high-resolution
electron microscopy and selective area diffraction to study the
precipitation of calcium sulfates from solution. These
materials, such as gypsum, play important roles in natural [1]
and industrial processes [2] but their precipitation
mechanisms remain largely unexplored. Based on our
experimental results, we demonstrate that gypsum forms at
room temperature via a three stage process: (a) homogeneous
precipitation of nanocrystalline hemihydrated calcium
sulfate, i.e. bassanite, below its predicted solubility (b)
self-assembly of bassanite into elongated c-axis co-oriented
aggregates and (c) transformation into dihydrate calcium
sulfate, i.e. gypsum [3]. These findings highlight that a stable
precursor phase can be formed below its bulk solubility and
that in the CaSO4 system the self-assembly of nanoparticles
plays a crucial role. Understanding why bassanite forms prior
to gypsum can lead to more efficient anti-scaling strategies
for water desalination and help explain the persistence of
CaSO4 phases at low water activities on Mars [4].
Additionally, a different reaction pathway could be
responsible for the formation of the massive gypsum deposits
in terrestrial evaporitic environments [1] or giant gypsum
crystals formed in caves [5,6].
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