MS35-P3 Crystal structures and stability of trigonal KLnF₄ fluorides (Ln = Y, Ho, Er, Tm, and Yb). <u>Karen</u> <u>Friese</u>,^a Nicholas Khaidukov,^b Andrzej Grzechnik,^c ^aJülich Centre for Neutron Science, Germany, ^bKurnakov Institute of General and Inorganic Chemistry, Moscow, Russia ^cInstitute of Crystallography, RWTH Aachen University, Germany E-mail: k.friese@fz-juelich.de

Trigonal KYF₄ doped with optically active rare earth ions is an efficient phosphor and a promising host for solid state lasers and thermoluminescent dosimeters [1-3]. Its multisite structure, with several crystallographic sites for rare earth ions, enhances the efficiency of up-conversion luminescence due to the interactions of ions located at various lattice sites. According to earlier studies on doped KYF₄, the luminescence data cannot be exclusively interpreted on the basis of a fully ordered K-Y distribution in the lattice [4].

Undoped and doped trigonal KLnF₄ fluorides (Ln = Y, Ho, Er, Tm, Yb) were synthesized hydrothermally and studied with synchrotron single-crystal and powder diffraction as a function of temperature and pressure. At atmospheric conditions, KHoF₄ and KErF₄ crystallize in space group P3₁, while KTmF₄, Er:KYbF₄, and KYF₄ crystallize in space group P3₂. In both enantiomorphic structures, the K⁺ and Ln³⁺ cations are completely ordered. All these structures are related to the structure of CaF₂ fluorite (space group Fmm). No phase transition is detected in KYF₄ at low temperatures down to 100 K at ambient conditions.

Er:KYbF₄ and KYF₄ undergo irreversible pressure-induced phase transitions at about 4 GPa. In each case, the single-crystals become fragmented into several crystallites indicating a possible first-order character of the transformations. The data for KYF₄ collected at 4.12 GPa could tentatively be indexed with the primitive hexagonal lattice $a \approx 16.1$ Å and $c \approx 19.6$ Å. Up to the phase transitions, Er:KYbF₄ and KYF₄ are more compressible along the *c* axis and their bulk compressibility predominantly results from the contraction of the KF₈ polyhedra.

According to Abrahams [5], KYF₄ fulfils all the criteria to be a potential ferroelectric and our analysis of the pseudo-symmetry shows that the same is true for all the KLNF₄ compounds studied here at atmospheric conditions. An analysis of the pseudo-symmetry with respect to the minimal supergroups P3₁12 and P3₂12, (t = 2) shows that the pseudo-symmetry increases with decreasing radius of the Ln³⁺ ion. It is also reflected in the fact that all the investigated crystals are twinned with the additional 2-fold axis as a twinning operation. In addition, pseudo-symmetry with respect to the minimal supergroups P3₁ and P3₂ (k = 3) gives rise to a pseudo-centering X=(0,0,0),(1/3,2/3,0),(2/3,1/3,0). Pseudo-symmetry with respect to this minimal k-supergroup also increases with decreasing radius of Ln³⁺.

At high pressures, the pseudo-symmetry in $Er:KYbF_4$ and KYF_4 is decreased and larger displacements of the atoms are necessary to reach the higher symmetrical space groups.

- [1] Le Fur, Y., et al. (1992). Acta Cryst. C48, 978.
- [2] Khaidukov, N.M., et al. (2002). Opt. Mater. 19, 365.
- [3] Parisi, D., et al. (2011). Opt. Mater. 34, 410.
- [4] Coluccelli, N., et al. (2008). Appl. Phys. B 92, 519.
- [5] Abrahams, S.C. (2003). Acta Cryst. B 59, 811.

Keywords: fluorides; disorder-order transformation; high pressure

MS35-P4 Kamiokite: A new multiferroic mineral

<u>G. Nénert</u>,^a M. Fukunaga^b, H. Kimura^b, P. Strobel^c and Y. Noda^b ^aInstitut Laue Langevin, Grenoble, France, ^bInstitute of Multidisciplinary Research for Advanced Materials, 2-1-1 Katahira, Sendai, Japan, ^cInstitut Néel CNRS-UJF, BP 166, Grenoble, France, E-mail: nenert@ill.eu

In recent years, the coupling between magnetic and dielectric properties in transition metal oxides gave rise to a significant research effort [1–3]. This effort is governed by the emergence of new fundamental physics and potential technological applications [2–4]. Multiferroic materials exhibit simultaneously (ferro/antiferro)magnetic, ferroelectric and ferroelastic properties. Contrary to multiferroic materials, magnetoelectric materials show an induced electrical polarization by a magnetic field. A proper understanding of the interplay between the various physical properties of these two types of materials relies heavily on the knowledge of the detailed crystal and magnetic structures.

The search for new materials presenting strong interplay between dielectric and magnetic properties has been concentrating mostly on perovskite related materials [2-4]. In order to further investigate the richness of this physic, it is of interest to search for new candidates. In this perspective, several minerals have been shown to be good candidates for multiferroic and/or magnetoelectric properties. Lately, minerals belonging to the melilite family [5] and the pyroxene family have shown some interesting properties [6].

We present here our results on the kamiotite mineral of ideal formula $Fe_2Mo_3O_8$. This mineral crystallizes in the pyroelectric symmetry $P6_3mc$ and orders antiferromagnetically at low temperature. We have investigated it by SQUID magnetometry, single crystal neutron diffraction and dielectric spectroscopy. These results show that Kamiokite is a new multiferroic mineral.

- [1] M. Fiebig, J. Phys. D 38, R123 (2005).
- [2] W. Eerenstein, et al., Nature 442, 759 (2006).
- [3] S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
- [4] A. Pimenov, et al., Nat. Phys. 2, 97 (2006); A. B. Sushkov, et al., Phys.Rev.Lett. 98, 027202 (2007).
- [5] H.Murakawa, et al. Phys.Rev.Lett. 105, 137202, (2010)
- S. Jodlauk, et al., J.Phys.:Condens.Matter 19, 432201
 (2007) ;G. Nénert, et al., Phys.Rev.B 79,064416(2009) ;
 80,024402(2009) ; 81,184408(2010) ; 82,024429(2010)

Keywords: magnetoelectricity; ferroic phase transitions; magnetic structures