Oral Contributions

[MS19] Heavy crystals: structural crystallography of heavy-element compounds

Co-Chairs: Olga V. Yakubovich (RU), Marie Colmont (FR)

[MS19-01] Examples of Ordered or Disordered Ternary Intermetallics Containing Rare-earth Elements and Transition Metals

<u>E. Gaudin</u>, J.L. Bobet, S. Tencé, S. Couillaud and B. Chevalier

CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France E-mail: gaudin@icmcb-bordeaux.cnrs.fr

In the first part of the presentation, the structural and magnetic properties of a new series of intermetallics with the general formula RE₆M₁₆₇Si₃ (RE = Ce-Tb, M = Co, Ni) [1-4] will be discussed. In these series Gd₆Ni₁₆₇Si₃ and Gd₆Co₁₆₇Si₃ exhibit very interesting magnetocaloric effect with the existence of an important magnetic entropy variation ΔS_m around room temperature [3]. All these compounds crystallize with the $Ce_6Ni_{1.67}Si_3$ structure type [2]. This structure type is closely related to the Ho_4Co_{307} (or Ho_6Co_{461}) structure type [5] with a perfect ordering between silicon and cobalt/nickel atoms. This hexagonal structure (S.G. $P6_3/m$) is characterized by infinite chains of face-shared trigonal prisms [RE₆] filled by Si or M atoms. Theses chains are running along the c-axis and extend as triangular columns by sharing rectangular faces in the (a, b)-plane. Between these columns infinite chains of face-shared [RE₄] octahedra are partially filled by M-atoms (Fig. 1). The strong delocalization of the electron density of M-atoms observed in these latter chains has been attributed to strong steric strains (Fig 1). This behavior was also observed in the homologous binary compound Gd_6Co_{485} [6].

In the second part, the discovery of two new Mgrich phases in ternary systems RE-M-Mg (RE = La, Gd, and M = Ni, Cu) will be presented. LaCuMg₂ [7] crystallizes in the La₂Mg₁₇ structure type (S.G. P63/mmc) with the lattice parameters a = 10.1254(2) and c = 10.0751(2) Å. A disordered structure is observed with a random distribution of Cu atoms on some La and Mg positions. The structure of the second phase, Gd₁₃Ni₉Mg₇₈ [8], was not fully determined because of a medium crystallinity. The structure was partially deduced using TEM and an average cubic structure with lattice parameter a = 4.55 Å could be assumed. A modulation along both **a**^{*} and **b**^{*} axis with vectors of modulation $q1 = 0.42a^*$ and q2 =0.42b* was observed. Because of the high amount of magnesium, the hydrogen absorption properties of these new phases were studied.

Figure 1: Structure of $Ce_6Ni_{1.67}Si_3$. Left: Projection along the c-axis. Right: Fourier-map showing the strong delocalization of the electron density within the chains of face-shared octahedra

Figure 2: Left: Structure of LaCuMg₈. Right: Electron diffraction pattern of $Gd_{13}Ni_9Mg_{78}$

[1] E. Gaudin, F. Weill and B. Chevalier, Z. Naturforsch. 61b (2006), 825

[2] E. Gaudin, B. Chevalier , J. Solid State Chem. 180 (2007) 1397

[3] E. Gaudin, S. Tencé, F. Weill, J. R. Fernandez,

B. Chevalier, Chem. Mater. 20 (2008) 2972–2979

[4] S. Tencé, E. Gaudin, G. André and B. Chevalier, J. Phys. D: Appl. Phys. 42 (2009) 165003

[5] R. Lemaire, J. Schweitzer, J. Yakinthos, Acta Crystallogr. B 25 (1969) 710

[6] S. Tencé, E. Gaudin, B. Chevalier, Intermetallics 18 (2010) 1216

[7] S. Couillaud, E. Gaudin, J. L. Bobet, Intermetallics 19 (2011) 336

[8] S. Couillaud, E. Gaudin, F. Weill, S. Gomez, C. Stan, D. Planté, S. Miraglia, J.L. Bobet, Acta Mater. 60 (2012) 4144

Keywords: Rare-earth intermetallics, structural disorder, new phases